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Abstract. This study introduces and evaluates the ES-LSTM, a forecasting model that 

integrates exponential smoothing with LSTM networks to optimize drug inventory 

management. The ES-LSTM model was tested against traditional LSTM models using 

pharmaceutical sales data, demonstrating superior accuracy in capturing both peak and 

regular demand patterns. The findings indicate that ES-LSTM could revolutionize 

inventory management in healthcare, making it a promising area for further investigation. 
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1. Introduction

Accurate drug demand prediction is not merely beneficial but essential for ensuring effective drug 

inventory management, which has a direct impact on the efficiency of healthcare operations and the quality 

of patient care [1]. Traditional forecasting methods, including time series analysis and regression models 

[2], have frequently fallen short in addressing the complexity of pharmaceutical demand, particularly when 

confronted with abrupt shifts in demand or dealing with sparse datasets. These challenges can lead to either 

significant overstock or dangerous shortages, both of which are detrimental to healthcare outcomes and 

economic efficiency. The severity of these issues has underscored the necessity for more sophisticated 

predictive tools capable of handling the intricate and often unpredictable nature of drug demand. In this 

context, the advent of machine learning algorithms has marked a revolutionary advancement in forecasting 

methodologies [3]. Among these, neural networks, including Long Short-Term Memory (LSTM) networks, 

and decision trees stand out for their ability to assimilate and analyze vast and varied datasets. These range 

from real-time health statistics to insights gleaned from social media, providing a more nuanced and 

dynamic approach to forecasting. 

Long Short-Term Memory (LSTM) networks are a distinguished class of machine learning models, 

excelling in their capacity to model complex time series data and capture long-term dependencies [4]. Their 

prowess makes them highly suitable for a variety of applications across different domains such as finance, 

healthcare, and natural language processing. Despite their capabilities, the deployment of LSTMs requires 

rigorous data preprocessing to effectively manage challenges like missing values, noise, and the intrinsic 

variability of time series data [5]. Normalizing data to align with the LSTM's sensitivity to input scale is 

also crucial. This preprocessing stage is not merely a preliminary step but a foundational component that 
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significantly influences the LSTM's ability to learn from the data accurately and deliver reliable predictions 

[6]. 

In our research, we are exploring the integration of exponential smoothing (ES) with Long Short-Term 

Memory (LSTM) networks, a method we call 'ES-LSTM'. This approach aims to combine ES's ability to 

smooth short-term fluctuations with LSTM's capacity for capturing long-term dependencies, enhancing 

time-series prediction accuracy. Our goal is to improve predictions in applications such as drug demand 

and sales forecasting, potentially revolutionizing forecasting methods in healthcare and beyond. 

2. Methodology

2.1 The Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) network [7], a type of recurrent neural network (RNN) used for 

sequential data processing. Each component of the LSTM cell is highlighted  in Figure 1, showing how 

data flows through the network at time 𝑡, with the description of each of the essential compoents is 

provided in Table 1.  

Table 1: Overview of LSTM network components: Mathematical formulations and functional descriptions 

Component Math formula Function 

Forget Gate  ( tf )  ( )1 · ,    t f t t ff W h x b −= + Decides what information to discard from 

the cell state. It uses the sigmoid activation 

function (σ). 

Input Gate (it)  ( )1 · ,    t i t t ii W h x b −= + Decides what new information to store in the 

cell state. It also involves a sigmoid layer. 

Candidate Layer  ( tC )    ( )1tanh  · ,    t C t t CC W h x b−= + Creates a candidate vector of new 

information to add to the cell state, using the 

tanh activation function. 

Cell State Update 
1t t t t tC f C i C−=  +  Combines the forget gate's output and the 

input gate's proposal to update the cell state 

(Ct). 

Output Gate ( tO )  ( )1 0 · ,    t o t tO W h x b −= +

( )* tanht t th O C=

Decides the next hidden state (ht), using the 

sigmoid function and the updated cell state 

passed through tanh. 

Figure 1: An architecture of a Long Short-Term Memory (LSTM) network.
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2.2 The Exponential Smoothing (ES) 

Exponential smoothing (ES) [8] is a rule of thumb technique for smoothing time series data using the 

exponential window function. Its popularity stems from the simplicity of calculation, intuitive appeal, and 

good performance on a wide range of time series. The simplest form of exponential smoothing is applied 

when the time series does not exhibit trend or seasonal patterns, which is often called "Single Exponential 

Smoothing." The formulas for the Single Exponential Smoothing are given by 

( ) 11t t tS x S  −= + − , (1) 

where 

• St is the smoothed statistic, the forecast for the next period

• xt is the actual value at time t

• St-1 is the value of the smoothed statistic for the previous period

• α is the smoothing factor of the series, 0 ≤ α ≤ 1.

3. Experimental Setupus

3.1 The Algorithm 

Figure 2 depicts a data processing sequence starting with preprocessing, including exponential 

smoothing, followed by a series of LSTM layers interspersed with dropout layers for regularization and 

ReLU activations for non-linearity. This structured pipeline culminates in an output, demonstrating a 

methodical approach to enhance data handling and prediction. 

Figure 2: Data processing pipeline with the sequential flow. 

3.2 The Dataset 

Since the actual dataset representing the real demand for medicine in a healthcare unit is not available 

for this initial research, we used a dataset of drug sales instead, assuming that the statistical behaviors of 

both are broadly similar. The dataset comprises 600,000 transaction records from 2014 to 2019, detailing 

sales date, time, drug brand, and quantity from a pharmacy Point-of-Sale system. It includes 57 drugs 

categorized under the Anatomical Therapeutic Chemical (ATC) system, with t his study focusing 

specifically on the M01AB category, non-steroidal anti-inflammatory and antirheumatic drugs, 

particularly acetic acid derivatives. The dataset is available at: 

https://www.kaggle.com/datasets/milanzdravkovic/pharma-sales-data.  

3.3 The Error Measurement Norms 

To measure the performance of the proposed strategy, three well-known error measurement norms are 

utilized and they are; Mean Absolute Error (MAE): 
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4. Main Results and General Dissucions

Table 2 and Table 3  show that the ES-LSTM consistently outperforms the traditional LSTM model. 

In the 2-unit setup, the MAE for monthly forecasts decreased dramatically from 112.38029 in LSTM to 

just 0.56420 in ES-LSTM, highlighting the effectiveness of integrating exponential smoothing into LSTM. 

Similar improvements are seen in other periods and error metrics, such as the reduction in RMSE for 

weekly predictions from 15.26822 in LSTM to 0.97782 in ES-LSTM, which underscores the added value 

of exponential smoothing in reducing prediction errors across all tested intervals. 

Table 2: Performance comparison of 2-unit LSTM vs. 2-unit ES-LSTM across different periods. 

Error 

Norm 

Hourly Daily Weekly Monthly 

LSTM ES-LSTM LSTM ES-LSTM LSTM ES-LSTM LSTM ES-LSTM 

MAE 0.54293 0.24174 0.81048 1.73186 11.77241 0.75947 112.38029 0.56420 
MSE 0.81509 0.15614 2.21820 5.05532 233.11858 0.95614 13405.92555 0.98753 
RMSE 0.90282 0.39515 1.48936 2.24840 15.26822 0.97782 115.78396 0.99375 

Table 3: Performance comparison of 4-unit LSTM vs. 4-unit ES-LSTM across different  periods. 

Error Norm 
Hourly Daily Weekly Monthly 

LSTM ES-LSTM LSTM ES-LSTM LSTM ES-LSTM LSTM ES-LSTM 

MAE 0.3076 0.2276 1.5362 1.5273 5.0883 4.9724 0.3076 0.2276 
MSE 0.1539 0.1326 3.7413 3.7331 39.4985 37.176 0.1539 0.1326 
RMSE 0.3923 0.3642 1.9342 1.9321 6.2847 6.0972 0.3923 0.3642 

When comparing the 2-unit and 4-unit LSTM architectures, the results clearly favor the more 

complex 4-unit configuration, which generally exhibits lower error rates. For instance, the RMSE for 

monthly forecasts in the 4-unit LSTM is significantly lower, at 0.3923, compared to 115.78396 in the 2-

unit LSTM. This trend is consistent across all periods and metrics, illustrating that an increase in the 

number of LSTM units enhances the model's ability to capture and analyze data trends more effectively, 

thereby improving overall forecast accuracy. This suggests that optimizing the architecture complexity 

based on the forecasting horizon is crucial for achieving the best model performance. 

Figure 3: Comparison of actual drug sales with predictions between standard LSTM and enhanced ES-LSTM 

models over a 100-hour period. 

Figure 3 provides a clear comparison between two predictive models, the standard LSTM (LES) and 

the enhanced ES-LSTM (ES-LES), against actual drug sales data across a 100-hour period. While the 

actual sales, marked by blue stars, show notable spikes indicating high demand, the standard LSTM 

model, represented by green circles, consistently underestimates these peaks, suggesting a limitation in its 

ability to adapt to sudden demand changes. In contrast, the ES-LSTM predictions, shown with red crosses, 

more accurately mirror the actual sales, especially in capturing the peaks' timing and magnitude. This 

improved alignment is likely due to the integration of exponential smoothing in the ES-LSTM, which 
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enhances its capability to manage short-term fluctuations effectively, demonstrating its potential for more 

reliable forecasts in critical areas like healthcare drug inventory management. 

5. Conclusion

The ES-LSTM forecasting model has proven effective in optimizing drug inventory management,

offering a substantial improvement over standard LSTM models by accurately predicting demand spikes 

and maintaining stability in typical sales fluctuations. This research suggests that ES-LSTM could 

significantly enhance healthcare inventory practices, reducing both shortages and overstock. However, 

further research is required to refine and adapt the model for broader healthcare applications.  

Based on this preliminary attempt, we recognize the need to investigate further, including 

incorporating Holt-Winters and ARIMA baselines, detailing dataset splitting methods, using alternative 

smoothing for seasonality, comparing ES-LSTM with other models, and optimizing LSTM units. 
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