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Abstract. This study assesses the effectiveness of YOLOvS5 and YOLOvVS in enhancing safety in medication
dispensing through precise identification of capsules and tablets. Using a dataset of 1,659 images, the models
were evaluated across various metrics in training, validation, and testing phases. Results indicate that YOLOv8
outperforms YOLOVS5 in most training and validation metrics, while YOLOvV5 shows superior performance in
testing. These findings highlight the potential of advanced object detection models to improve patient safety by
reducing medication dispensing errors, offering valuable insights for the deployment of AI in healthcare
environments.
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1. Introduction

The accurate identification of capsules and tablets is critical for ensuring the safety and efficacy of
pharmaceutical interventions [1]. Precise medication identification prevents adverse drug reactions and
therapeutic failures, thereby safeguarding patient health. In healthcare settings where multiple medications are
dispensed, such as hospitals and nursing homes, correct identification is essential for minimizing dispensing
errors and enhancing treatment outcomes [2]. Consequently, the ability to distinguish pharmaceuticals accurately
is a fundamental aspect of clinical safety and care effectiveness [3].

The identification of capsules and tablets has evolved from reliance on manual recognition of physical
characteristics to the adoption of deep learning technologies [4]. Deep learning models, trained on extensive
image datasets, enhance accuracy in detecting subtle discrepancies in medication appearances, including
counterfeits[5]. This advancement not only minimizes human error but also streamlines pharmaceutical
management, significantly improving patient safety and adherence to treatment protocols in healthcare
environments. Several algorithms have been developed and deployed to address this challenge, including Faster
R-CNN and RetinaNet, among others [6]. In particular, our attention is focused on those belonging to the YOLO
family. YOLO, introduced by Joseph Redmon and colleagues [7], is an object detection algorithm that utilizes
convolutional neural networks (CNN) to identify objects in real-time [8]. This single-stage method operates
effectively on standard GPUs and is designed to split the image into a grid of cells, with each cell tasked with
detecting objects in a specific area. This structure facilitates quicker object detection compared to traditional
two-stage methods, making it especially advantageous for real-time applications. Over time, YOLO has
undergone several iterations, each enhancing its speed, accuracy, and ability to detect objects of different sizes
[9].

This study concentrates on applying two variants of YOLO algorithms, YOLOS5 and YOLOS, to the task of
identifying capsules and tablets. It seeks to comparatively assess the performance of these well-known
algorithms, with the goal of providing deeper insights into their characteristics and capabilities for this specific
task.
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2. Methodology

2.1. The Two YOLOs
The YOLO architecture consists of three main components: the backbone, neck, and head, each contributing
to its speed and accuracy improvements [10].
Backbone: Extracts essential features from images using CNNs trained on datasets like ImageNet, with
common backbones including VGG16, ResNet50, CSP-Darknet53, and EfficientRep.
Neck: Serves as a bridge between the backbone and head, integrating features from various layers using
techniques like SPP and PAN.
Head: Manages final detection tasks such as bounding box predictions and classification, using single-
stage, multi-scale, and anchor-based approaches.

YOLOVS5: It focuses on providing a balanced performance between speed and accuracy. Fig 1 outlines the
YOLOVS architecture, consisting of three main parts: Backbone, Neck, and Head. The Backbone features layers
like Focus, convolutional, C3 blocks, and Spatial Pyramid Pooling (SPP) for detailed feature extraction. The
Neck, incorporating PANet, uses upsampling and concatenation to enhance these features. Finally, the Head
employs multiple Conv2d layers to deliver precise object detection and classification across various scales.

YOLOVS: It introduces more sophisticated architectural enhancements and optimizations that improve both
the model's efficiency and its detection capabilities across a wider range of object sizes and types. These
enhancements often include more advanced attention mechanisms, improved backbone architectures for deeper
and more effective feature extraction, and more complex neck designs that further enhance feature integration
across scales. Additionally, YOLOvV8 may incorporate newer training strategies and loss functions that refine the
learning process, leading to higher precision and recall rates. As the full diagram of YOLOVS consists of many
components and occupies considerable space, interested readers are recommended to refer to [12].
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Conv2d
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Fig. 1: A typical architecture of YOLOVS [11].

Conducting a comparison between YOLOvV5 and YOLOVS is essential to identify advancements in object
detection, assessing which model performs better in terms of accuracy, speed, and efficiency. This investigation
helps in selecting the right model for specific applications, optimizes resource allocation, and guides future
enhancements in Al technologies. Such comparative insights are crucial for developers, researchers, and
industries aiming to deploy the most effective Al solutions in real-world scenarios.

2.2. The Dataset

For the comparative investigation between YOLOvVS and YOLOvS, the dataset (available from
https://universe.roboflow.com/seblful/pills-detection-s9ywn/dataset/19 ) of 1,659 images is divided into training
(87%), validation (8%), and test sets (5%), Fig 2. Images are uniformly resized to 640x640 pixels and simplified
by dropping 117 classes. Augmentation techniques include generating three variations per training example
through horizontal and vertical flips, cropping (0-20% zoom), rotating (-15° to +15°), and adjusting brightness (-
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25% to +25%) and exposure (-8% to +8%). Additionally, 11% of images are converted to grayscale and slightly
blurred (up to 1px), enriching the dataset's diversity to challenge and enhance model robustness.

Fig. 2: Object detection using YOLO models: (a) Initial bounding box detections, (b) Refined detection highlighting
capsules, (c) Refined detection highlighting tablets.

3. Main Results and General Discussions

Table 1 presents the comparative performance results of two versions of the You Only Look Once (YOLO)
object detection model, specifically YOLOv5 and YOLOVS, as applied to a dataset consisting of capsules and
tablets. The evaluation metrics used to assess the models' effectiveness include Precision, Recall, F1-Score,
mean Average Precision at 50% intersection over union (mAP50), and mAP50-95, which is the mAP calculated
over different loU thresholds from 50% to 95%.

Table 1: Performance comparison of YOLOvS and YOLOVS across key metrics.

Training Validation Testing
Metrics
YOLOVS YOLOvV8 YOLOvV5 YOLOvVS8 YOLOV5 YOLOVS8
Precision 0.869 0.885 0.869 0.892 0.821 0.801
Recall 0.866 0.881 0.866 0.873 0.751 0.738
F1-Score 0.867 0.883 0.867 0.882 0.784 0.768
mAP50 0914 0.935 0.914 0.934 0.795 0.789
mAP50-95 0.536 0.571 0.536 0.571 0.441 0.444

From the table, it is evident that both YOLOv5 and YOLOvV8 show robust performance across all metrics in
the training and validation phases. In the training phase, YOLOvS8 outperforms YOLOVS5 in terms of Precision
(0.885 vs. 0.869), Recall (0.881 vs. 0.866), F1-Score (0.883 vs. 0.867), and mAP50 (0.935 vs. 0.914), suggesting
that YOLOvV8 may have a better overall fitting to the dataset. Similarly, in the validation phase, YOLOVS
continues to demonstrate slightly higher scores than YOLOvVS across all metrics, with notable improvements in
Precision (0.892 vs. 0.869) and mAP50 (0.934 vs. 0.914).

However, the testing phase results reveal a different scenario where both models experience a drop in
performance metrics compared to training and validation, indicating a possible overfitting to the training data.
YOLOVS and YOLOvV8 score 0.821 and 0.801 in Precision, respectively, and similarly lower scores in other
metrics like Recall, F1-Score, and both mAP50 and mAP50-95. This drop in performance in the real-world
testing scenario underscores the challenges in generalizing the models beyond the training data and suggests the
need for further tuning or training with a more diverse dataset to enhance their robustness and applicability in
practical settings.
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Fig. 3: Training loss and performance metrics of; Top) YOLOvVS, and Bottom) YOLOvS8 models over 100 epochs.

Fig 3 depicts the training performance of YOLOv5 and YOLOv8 models over 100 epochs, focusing on their
ability to detect objects like capsules and tablets with the top row results are from YOLOv5. YOLOvVS, shown in
the bottom row, consistently shows superior performance compared to YOLOVS in terms of loss reduction, with
smoother and lower curves across all loss categories. This indicates that YOLOv8 has a more efficient learning
process, potentially due to a more advanced or better-optimized architecture, leading to more accurate object
localization and classification.

In terms of precision and recall, both models exhibit substantial improvement as training progresses, with
values nearing 0.9 towards the end of the training cycle. However, YOLOvVS again edges out YOLOVS,
achieving slightly higher scores in both metrics. This enhanced performance in precision and recall suggests that
YOLOVS is more effective at minimizing false positives and negatives, making it a more reliable choice for real-
world object detection applications where accuracy is critical.

However, While YOLOv8 may demonstrate slight improvements over YOLOV5 in terms of lower loss
values and higher precision and recall, the performance of YOLOVS is still robust. It shows that it can reliably
detect and classify objects with a high degree of accuracy, making it a competent model for practical
applications where YOLOvVS’s enhancements might not be necessary or could be outweighed by other factors
such as computational efficiency or resource constraints.

4. Conclusion

The comparative analysis of YOLOv5 and YOLOVS for identifying capsules and tablets demonstrated that
YOLOVS generally excels in precision and learning efficiency during the training and validation phases.
However, the observed performance decline in real-world testing for both models suggest an issue of overfitting
to the training dataset. This highlights the necessity for further adjustments and the use of a more varied dataset
to enhance the models' robustness and practical usability in medication dispensing systems. This research
underscores the importance of selecting the appropriate AI model based on specific operational needs and
conditions, aiming to optimize patient safety and medication efficacy in healthcare settings. There are several
promising ideas for future work: using advanced data enhancement techniques, adding detailed comparative
analyses, and analyzing different scenarios for YOLOvS5 and YOLOVS in feature extraction to enhance the
article's comprehensiveness.
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