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Abstract. To identify fires occurring in complex environments faster and locate the flames more accurately, 
the synthesized data enhancement methods are proposed, then a self-built flame dataset is constructed, and a 
flame recognition model based on Yolo-v5s is developed. The results show that after data enhancement, the 
false alarm rate decreases by 18.38% and the F1 score improves by 19.79%, which achieves a significant 
improvement in the quality of flame recognition. 
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1. Introduction 
While the light of the flames helped humans away from the primitive form of life, at the same time, fire 

has also caused a lot of disasters worldwide. The fire poses a serious threat to the safety of human life, 
especially when it occurs in buildings, where it spreads rapidly and destroys life and property[1]. The fire also 
threatens socio-economic development and people's normal life[2]. If a rapid flame detection system was 
introduced to accurately identify and locate fire initiation using computer vision technology[3], and realize the 
alarm at the early stage of fire, more time and space could be left for the subsequent extinguishing of fires and 
reduce the losses caused by fires. 

Compared with traditional machine vision methods, the increasing deep learning techniques have higher 
feature extraction efficiency. L.Jichao et al.[4] combine the single-point multi-box detector with the Mobile-
Net model to design a site robot with more than 90% accuracy in flame warning for multi-frame video. 
Viswanatha et al.[5] propose a method that combines Yolo and Convolutional Neural Networks (CNN) to make 
it more effective in wide-area vision. It is easy to see that among the existing target detection algorithms, the 
Yolo algorithm outperforms other models because of its extremely fast detection speed. 

Unlike the targets with fixed morphology, the morphology of flames changes all the time. Therefore, 
improving the model's ability to recognize objects with irregular morphology is crucial to enhancing the 
model's detection accuracy. Jin et al.[6] proposed a real-time fire smoke detection algorithm based on multi-
scale feature information and an attention mechanism. Zhang et al.[7] also proposed a smoke simulation 
method based on a mathematical model. In addition, the size of the flame will gradually expand with the 
intensification of the fire, and enhancing the model's ability to recognize small-sized flames will advance the 
time for the fire to be detected. Z.Yuanyuan et al.[8] used a clustering algorithm to optimize a multi-scale prior 
frame to enhance the recognition of small-size flames in flame detection based on Yolo-v3. Bari[9] and 
J.Wenping et al.[10] also went through multiple migration learning to improve the detection of initial fires. 

These studies focus on optimizing the model based on the characteristics of the flames and give less 
consideration to real-life situations under the surveillance field of view. In many cases, the monitor employs a 
top-down view, whereas existing flame datasets predominantly feature a horizontal view or are generated by 
extracting frames from fire-related videos, exhibiting limited generalization performance. Therefore, 
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adjustments to the dataset are necessary. At the same time, the flames are very easy to confuse with sunlight 
and lights at lower resolutions, and false alarm rates are higher in bright environments. 

 To address the above issues, we propose a flame recognition method based on data enhancement and Yolo-
v5s. First, we establish a flame dataset by synthesized various data enhancement methods, then develop a fast 
and effective flame recognition method under the framework of the Yolo-v5s algorithm. Finally, the feasibility 
of the proposed method is verified through the self-constructed dataset, realizing accurate flame recognition 
under the monitoring perspective. 

2. The Yolo-v5s Structure 
Yolo-v5s is a deep learning-based target detection algorithm proposed by Ultralytics LLC in 2020[11], 

which can quickly and efficiently detect multiple targets in images or videos[12], and label their locations and 
categories. Its image detection speed is about 140 frames per second, which is much faster than traditional 
object detection algorithms. The model file size of Yolo-v5s is only 14 MB and the network structure of the 
Yolo-v5s model[13] is shown schematically in Fig. 1. 

 
Fig. 1: Network structure diagram of Yolo-v5s 

3. Data Enhancement Methodology 
The training sets of common flame recognition models are all flame images, which make the model have 

a low miss rate in flame recognition, but the distribution of flames in the dataset is not uniform and the 
generalization ability is poor. Therefore, in the study, the generalization performance of the dataset will be 
optimized through a series of data enhancement methods to reduce the false positives of the model and increase 
the accuracy. 

3.1.  Negative Sample Screening Method 
During the training of the prediction model, it was found that negative samples have a great impact on the 

accuracy of the trained model. If pictures with bright, reddish-yellow elements are fed into the model without 
data augmentation, there is a high probability that the model will misreport them as flame pictures. As shown 
in Fig. 2, the evening sun, sunrise, incandescent lights, neon lights, and other non-flame pictures will be 
misidentified as flames by the model, which can be cleverly utilized to provide negative samples used for 
subsequent training as a way of reducing the false alarm rate of the model. 
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       Fig. 2: Non-flame image incorrectly identified as a flame 
In flame recognition, confidence refers to the probability that the model presumes an area to be a flame, 

usually expressed as a numerical value ranging from 0 to 1. The greater the confidence level, the greater the 
likelihood that the model believes the area is a flame. To ensure the accuracy of the detection results, it is 
necessary to set a confidence threshold, when the confidence level is greater than this threshold, the model will 
determine that the region appears to be a flame, otherwise, it is considered that the region contains no flame. 

In the flame recognition model based on the Yolo-v5s algorithm, the confidence level of the flame 
(Pr(Fire) ∙ I oU) equals to the product of the probability of the flame category appearing in the detection 
frame(Pr(Fire|Object)) and the frame confidence score(Pr(Object) ∙ IoU), i.e. : 

 r ( ) ( | ) ( )truth truth
pred r r predP Fire IoU P Fire Object P Object IoU∗ = ∗ ∗                                        (1) 

Where 𝑃𝑃𝑟𝑟(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) denotes the probability that the object presents in the detection frame is of flame type, 
𝑃𝑃𝑟𝑟(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹|𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) denotes the probability that the object is of flame type under the condition that the object is 
present in the detection frame, 𝑃𝑃𝑟𝑟(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) represents the probability that the object is present in the detection 
frame, and IoU is the abbreviation of Intersection over Union, i.e., the degree of overlap between the prediction 
frame (predicted box) and the real frame (ground truth): 

 A BIoU
A B
∩

=
∪

                                                                              (2) 

Where A denotes the prediction box and B denotes the ground truth. 
The collected flame pictures as well as non-flame pictures with similar features to the flame were input 

into the model in batches. After repeated experiments to verify the results, for the output results when inputting 
flame pictures, the data with a confidence level above 0.6 were screened to be added into the flame dataset; 
for the output results when inputting non-flame pictures, all the mislabels misidentified as flames were changed 
to non-flame labels in batches and were added into the next stage of the dataset as negative sample data. 

3.2.  Boundary Extension Cropping Method 
To expand the dataset of small samples, the most common method used in existing studies is to randomly 

crop the images, which may cause valid information to be removed or partially lost. Therefore, we propose a 
boundary-extended cropping method to turn the original multi-target image into a single-target image 
containing sufficient background information. 

The specific implementation process is illustrated in Figure 3: First, reading label information from images, 
iteratively processing each labeled bounding box, then generating cropped images equal to the original image's 
label count. As shown in Fig.4, when a label is calculated, other label boxes need to be considered as obstacles, 
starting from the label box boundaries, expanding the boundaries in four directions, up, down, left and right, 
until it touches the obstacle or image boundary. 
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      Fig. 3: Edge extension clipping method               Fig. 4: Edge extension clipping method 
diagram 

The advantages of this method are mainly reflected in the expansion of the small sample data set while 
avoiding the loss of effective information that may be caused by random cropping. In addition, when using 
this method to evaluate the accuracy of a specific label, other non-target label boxes will be regarded as 
obstacles, thus ensuring the independence between different targets and helping to improve the generalization 
performance of the model. 

3.3.  Geometric Transformation 
Considering the different morphology of the flame captured by the lens from different directions, in order 

to simulate different viewpoints and scenes, and to improve the recognition ability of objects captured from 
opposite and side directions[14]. The position of each pixel point and marker point of the image after rotation 
is calculated as follows: 

Assume that the image origin is located at the upper left and set the image coordinates of the rotation point 
M to (x, y) and the image center coordinates to (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐).  After moving the origin to the center of the image, 
the coordinate of point M becomes (x− 𝑥𝑥𝑐𝑐 , y− 𝑦𝑦𝑐𝑐). If the point M is rotated by an angle of a, the coordinates 
of the rotated point (x′, y′) in the coordinate system of the center of the image are: 

 
' cos( ) sin( )

*
sin( ) cos( )'

c

c

x xx a a
y ya ay
−−     

=      −    
 (3) 

Considering the characteristics of the flame, when flipping, it is done only in the horizontal direction. Due 
to the variable shape of the flame, the image can be segmentally affixed; since the viewpoint of the surveillance 
is often top-down, the image can be perspective transformed. The effect of some of the geometric 
transformation methods is shown in Fig. 5. 

   
(a) Original (b) Zoom (c) Rotation 

   
(d) Translation (e)Perspective  transformation (f) Segmentation 

Fig. 5: Schematic diagram of geometric transformation methods 
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3.4.  Smoke Simulation Method 

Some fires occurring indoors often produce smoke that is difficult to diffuse, which often blurs the view 
under surveillance quickly, resulting in pixel-level feature-based information that is not obvious, making 
recognition difficult. In this study, a real-time fire smoke detection algorithm is used to simulate the visibility 
degradation of smoke from fire by applying random smoke, Gaussian blurring, and contrast enhancement to 
the image in order to improve the model's ability to recognize flames in thick smoke. 

After several tests, the best model parameters in the experiment are set as in Table 1, and the effect is 
shown in Fig. 6. 

Table 1:  Training Set and Test Set Model Parameter Settings 

Parameter 
settings 

 
The average 

intensity of clouds 
Frequency noise 

index 

Standard 
deviation of 

Gaussian 
distribution 

Minimum mixed 
alpha 

Training 
set 

 
251.8 -1.4 2 0.7 

Test set  254.2 0.8 2 0.8 
 

Parameter 
settings Frequency index Alpha sampling 

multiple  
The sparsity index of 

clouds Density multiplier 

Training set -2 0.3 0.9 0.5 
Test set -1 0.3 0.9 0.6 

 

   
(a) Adjust contrast (b) Gaussian blur (c) Simulate smoke alone 

Fig. 6: Schematic diagram of smoke simulation method 

As shown in Fig.7, a random combination of the geometric transformation method and the smoke 
simulation method using a similar data augmentation method lead to a multiplicative augmentation of the 
original samples based on the characteristics of the fire flames and a better simulation of the diversity of the 
fire occurrence scenarios. 

   
(a)Geometric transformations (b) Integrated simulation of smoke       (c) Combined effects 

Fig. 7: Combination of geometric transformation and smoke simulation method 

4. Experiments 

4.1.  Experimental Platform 
 The experimental system environment is: Intel i7-10750H processor, 16G RAM, NVIDIA GeForce RTX 

2060, using a development environment that includes python version 3.9.8, pytorch version 1.11.0, cuda 
version 11.1, and cudnn version 8.1. 

The training parameters were adjusted by setting the number of images in each batch to 2, the number of 
training rounds to 500, the initial learning rate to 0.01, the number of warm-up rounds to 3, the IOU threshold 
for training to 0.2, and the IOU threshold for validation to 0.5. 
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4.2.  Recognition Model Training 

The training of the model requires labelled images, and the model will automatically extract image features 
from the images in the dataset according to the labelled regions. The labelled file is a txt document, each line 
of information in the document is label information, and each label information contains the label category, 
the label midpoint position, and the width and height of the label box. In order to obtain the labelled images, 
1000 randomly selected images from the fire images were manually labelled. These images cover the behavior 
of flames under different environmental conditions, including day and night, indoor and outdoor settings, as 
well as various lighting conditions. Labelimg is a tool commonly used in the field of deep learning for data 
annotation, which was used to complete the labelling of these images. 

By visiting the image resource website and the database collected from the public domain of BILKENT 
University[15], 8972 flame images were screened, out of which 8000 flame images were taken as the training 
set and the remaining 972 images were taken as the test set and the control model was trained. 

4.3.  Data Enhancement 
After testing, it was found that although it has a good performance in simple flame recognition, the anti-

interference ability is extremely poor, if the input to the system is bright, reddish-yellow objects will be the 
probability of the model will be incorrectly recognized as a flame. By using the negative sample screening 
method, 4987 non-flame images with similar characteristics to the flame were screened from the gallery, and 
4000 of them were added to the training set, and the remaining 987 were added to the test set, so as to improve 
the model's generalization ability and accuracy. In the data enhancement stage, a total of 10 enhancement 
methods are set up, including boundary extended cropping method, segmented affine, zoom-in and zoom-out, 
horizontal flip, rotation, random four-point perspective transformation, displacement, Gaussian blur, smoke, 
and adjusting contrast, and the intensity of any enhancement method will be randomized within a certain 
interval. 

When augmenting the pictures in the test set, new pictures with more than five augmentation methods 
were randomly generated. To ensure that the number of pictures in the training set of the experimental group 
is the same as that of in the comparison group, another 4,000 flame pictures are randomly selected from the 
existing training set and mixed with 4,000 non-flame pictures to form the training set of the experimental group, 
totally 8,000 pictures. 

4.4.  Analysis of Experimental Results 
The recognition quality of the model is evaluated by Precision, Recall, and the F1-score, which are defined 

below: 

 TPPrecision=
TP+FP

 (4) 

 TPRecall=
TP+FN

 (5) 

 Precision RecallF1 score 2
Precision+Recall

×
= ×  (6) 

Where TP (True positive) is the number of flame pictures that were correctly identified, FN (False 
negative) is the number of non-flame pictures that misreported flames, TN (True negative) is the number of 
non-flame pictures that were correctly processed, and FP (False positive) is the number of flame pictures that 
should have been reported but were not. 

Based on the comparison model, the model trained using the enhanced data set is the experimental model. 
In order to evaluate the effect of data enhancement, the test set was tested to assess the model quality using the 
comparison model and the experimental model at a confidence threshold in steps of 0.1, and from 0.2 to 0.8, 
respectively. The TP and FP curves for the comparison and experimental groups are shown in Fig. 8 and Fig. 
9, respectively. As it can be seen from the figures, our proposed model has a significant improvement over 
comparison model at all confidence thresholds. 
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Fig. 8: Confidence threshold and TP 

values 
Fig.9: Confidence threshold and FP 

values 
Fig.10: Confidence threshold and    

F1 score 

  The F1 score is the reconciled mean of precision and recall, which is a better measure than precision or 
recall alone. The change curves of the F1 score for the control and experimental groups are shown in Figure 
10, and the overall validation results are shown in Table 2. Our proposed model also achieves better 
performance. 

Table 2:  Results of Comparison Model and Experimental Model at Different Confidence Threshold 
Confidence threshold 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Comparison model 

TP (%) 98.56 98.15 96.09 88.58 73.15 49.38 26.85 
FP (%) 39.92 36.47 21.68 16.92 10.74 4.05 0.81 

Precision (%) 70.86 72.60 81.36 83.75 87.03 92.31 97.03 
Recall (%) 98.56 98.15 96.09 88.58 73.15 49.38 26.85 

F1-score (%) 82.44 83.46 88.11 86.10 79.49 64.34 42.06 

Experimental model 

TP (%) 99.07 99.07 98.87 98.56 98.35 86.83 60.80 
FP (%) 0.81 0.61 0.20 0.10 0.10 0.10 0.00 

Precision (%) 99.18 99.38 99.79 99.90 99.90 99.88 100.00 
Recall (%) 99.07 99.07 98.87 98.56 98.35 86.83 60.80 

F1-score (%) 99.13 99.23 99.33 99.22 99.12 92.90 75.62 
After data enhancement, the confidence level of the model recognizing the flame images is significantly 

improved, and the false alarm rate of the performance model for non-flame images is significantly decreased, 
with an average decrease of 18.38%; when the confidence threshold is set to 0.7, the F1 score of the control 
group has been decreased to 79.4%, while the experimental group still has 92.9%, with an average 
improvement of 19.79% in F1-score. We draw the conclusion that under the premise of keeping the model 
architecture unchanged, the application of data augmentation methods effectively expands the number of flame 
samples, thereby enhancing the accuracy of flame detection. 

The detection speed of several mainstream target detection algorithms on various datasets, and the 
performance metric are shown in Table 3. The results show that the Yolo-v5s achieves the best performance in 
F1 score. Besides, the model also exhibits strong generality in common environments such as indoor settings, 
forested areas, and factories. 

Table 3:  Comparison of detection rate and accuracy of several target detection algorithms 
Algorithm  Dataset name Detection speed F1 score 
Yolo-v5s Self-built dataset 166 fps 92.9% 

Faster R-CNN VOC2012 dataset 45 fps 91.3% 
SSD COCO dataset 58 fps 89.2% 

5. Conclusion 
After data enhancement by the proposed methods, a new flame dataset is built, then the false alarm rate is 

significantly reduced, and the quality of flame recognition by the flame detection model is greatly improved. 
The research focuses on the current use of frame-by-frame detection of video, and how to utilize the temporal 
information of video images, which need to be studied in depth in the future. 
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