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Abstract. Retinal neovascularization (RNV) is a pathological condition characterized by the abnormal 
growth of new blood vessels within the retina. Detecting RNV can be achieved through optical coherence 
tomography angiography (OCTA), an advanced imaging technology capable of visualizing retinal blood 
vessels. However, identifying RNVs within OCTA images is particularly challenging due to their varying 
patterns and sizes and overlapping vascular networks. In this study, we addressed this challenge by extracting 
features related to vessel density and bifurcation points within the vascular networks to pinpoint regions of 
interest (ROIs). Our systematic approach led to selecting a single ROI as the RNV region, with its maximum 
weighted addition of vessel and bifurcation densities as the location for RNV detection. Notably, our method 
achieved a localization accuracy of 68.29% in the 41 OCTA images with RNV, demonstrating a significant 
14.63% improvement in performance over VNet-based localization. 
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1. Introduction
Optical coherence tomography angiography (OCTA) is a non-invasive imaging technique that offers

detailed, depth-specific information about blood flow within the retinal and choroidal blood vessels [1]. It 
achieves this by analyzing the stability and fluctuations in backscattered light to detect the motion of blood 
cells in each layer of the retinal cross-section. Due to its continuous advancements, OCTA has emerged as an 
indispensable diagnostic tool for various retinal and choroidal disorders, including diabetic retinopathy and 
age-related macular degeneration. These conditions manifest with various clinical signs such as haemorrhage, 
exudates, and neovascularization (NV). OCTA has proven to be a superior and reliable method for efficiently 
visualizing and evaluating neovascular lesions compared to other retinal imaging techniques [2-4]. 

NV lesions in the retina are categorized into two main types based on their location within the retinal 
layers: choroidal neovascularization (CNV) and retinal neovascularization (RNV). CNV is primarily 
associated with age-related macular degeneration (AMD) and typically develops in the choriocapillaris and 
choroidal layers, protruding occasionally into intraretinal layers. In contrast, RNV is predominantly linked to 
diabetic retinopathy (DR) and typically originates in the retinal layer, extending into the vitreous cavity.  

In this study, our primary focus centers on detecting RNV within OCTA images. Detecting RNV 
complexes poses a more significant challenge than choroidal neovascularization (CNV) due to their 
resemblance to the complex background of retinal vascular networks. RNV complexes exhibit a broad 
spectrum of patterns and sizes, ranging from tiny nodular knots and capillary loop fronds in their early stages 
[5]. As RNV matures, it can evolve into more intricate configurations, including medusa-like or tangled 
wool-like patterns, tight knots, beehive-like structures, or extensive networks of thick, matured vessels [6-7]. 
For visual reference, please refer to Fig. 1, which showcases examples of these various RNV patterns.  
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Fig. 1: Examples of RNV patterns: (a) medusa, (b) oversized frond/ tangled wools, (c) a knot, and (d) beehive.  

2. Literature Review 
Research on automatic neovascularization (NV) analysis using OCTA images began in 2015. Most 

studies in this field have primarily focused on the automatic detection, segmentation, and quantification of 
NV related to the choroidal neovascularization (CNV) type [8].  

The number of works related to the automatic analysis of RNV is significantly lower than those focused 
on CNV, primarily because RNV presents more challenging research problems. Most of the work related to 
RNV involved clinical studies [8]. The following are only studies on RNV segmentation and quantification 
on OCTA images.  All were published between 2021 and 2022. 

In RNV segmentation, Wu et al. [9] conducted the initial study in 2021 employing image processing 
techniques. Their approach involved partial line detection and the vascular connectivity algorithm, composed 
of colour space conversion, pixel clustering, artefact removal, and OTSU's binarization [10] to effectively 
segment RNV vessels within OCTA images of the vitreous layer. In a subsequent study by Li et al. [11], 
ResNet 101 [12] was utilized to identify the presence of RNV in Ultra-wide OCTA (UW-OCTA) images of 
the superficial retinal layer. Subsequently, the RNV images were input into VNet [13] to segment the RNV 
lesions precisely. 

This paper introduces a novel approach for pinpointing an RNV location in OCTA images using feature 
maps derived from vessel density and bifurcation points. We achieved a localization accuracy of 68.29%, a 
substantial enhancement compared to the state-of-the-art method, including the VNet-based method, 
VNet_Li [11], with an improvement of 14.63%. Notably, this technique represents a pioneering endeavour in 
RNV localization, significantly contributing to automated RNV analysis within the research community. 

3. Methodology 
Our proposed algorithm comprised five steps: preprocessing, vessel detection, vessel feature density 

maps generation, strength map generation, and localization of the RNV region. Fig. 2 depicts our framework. 

 
Fig. 2: Overall method’s framework.  

The details of each step are described in the following subsections. 

3.1.  Preprocessing 
To enhance contrast in the input image, which was affected by noise and resulted in low contrast 

between foreground and background pixels, we utilized a selective linear mapping technique [14]. This 
method adjusts intensity values, rounding up the top 20% to the maximum intensity and rounding down the 
bottom 20% to the minimum intensity. 

3.2.  Vessel Segmentation 
Blood vessels of varying sizes naturally exist in the superficial retinal layers of OCTA images. We 

employed the Frangi filter [15] to solve the multiple-vessel sizing problem. Our vessel segmentation process 
was divided into three channels for three vessel sizes. Gaussian filtering with smoothing parameters of 1.5, 
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2.5, and 1.75, Frangi sensitivity 25, 15, and 5, and Gaussian kernels with standard deviations 38-42, 11-15, 
and 1-11 in the Frangi’s Hessian matrix, were used for large, medium, and small size vessels, respectively.  

Niblack thresholding [17] improved the visibility of vessels detected in Frangi's results. Equation (1) 
illustrates the Niblack thresholding (T ) applied to a small square window centered at ( , )x y . 

( , ) ( , ) . ( , )T x y x y k x yµ β= + ,                                                         (1) 
where ( , )x yµ is the average intensity, ( , )x yβ  is the intensity’s standard deviation, and k  is a constant. 

We used window widths of 96, 32, and 8 pixels, and k  of 1.2, 0.7, and 0.7, for the large to small channels, 
respectively. Morphological closing [18], employing a disk-shaped structuring element, was used to seal 
small undesired gaps at vessel branching points and within the vessels. Specifically, disk elements with radii 
of 5, 2, and 2 pixels were utilized in the three channels. Finally, the vessel networks obtained from each 
channel were combined to represent the entire vessel network comprehensively. 

3.3.  Vessel Feature Density Maps Generation  
A vessel density map and a bifurcation density map were considered. First, a medial surface axis 

thinning algorithm [19] was employed to derive a skeleton of the vessel network. This algorithm 
progressively reduced the thickness of foreground objects within the binary image to one pixel, preserving 
the original object's topology and connectivity. To produce a vessel density map vD , we utilized a moving 
window filter [20] with dimensions of 21×21 pixels and a step size of one pixel applied to the skeleton 
image. The vessel density at a point ( , )x y    is a ratio of the number of vessel pixels to the total area in the 
moving window centering the point.   

A bifurcation points image was generated from the vessel skeleton image using neighborhood analysis, 
connectivity assessment, and morphological operations. Points connected to three or more neighbors were 
marked as bifurcation points. Iterative morphological operations removed false positives. To get a 
bifurcation density map vD , a moving square window of widths 21 pixels [20] and a step size of one pixel 
was used. The bifurcation density was then calculated by finding the ratio of bifurcation points to the total 
area within the window. Fig. 3 depicts the skeleton image, the vessel density map, the vessel bifurcation 
points image, and the vessel bifurcation density maps. 

    
Fig. 3: Illustration of vessel feature density maps creation- skeleton vessels (first), vessel density map (second), a vessel 

bifurcation points map (third), and a vessel bifurcation density map (fourth)   

3.4.  Strength Map Generations 
Strength map ( S ) depicting locations in the image that potentially contain RNV were used for 

determining the RNV location. Min-max normalization [21] was applied to the density maps vD and bD to 
equalize the ranges in both maps. The following four strength maps: VS , BS , EMS , and WAS  were used. 

a. VS is the same as the normalized vessel density map vD  
b. BS is the same as the normalized vessel bifurcation density map bD  
c. EMS is the result of elementwise multiplication of normalized vD  and bD      
d. WAS is the result of the weighted addition of normalized vD  and bD  with the weights set to the 

accuracies of the RNV localization using VS  and BS  
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(a) VS  (b) BS  (c) EMS  (d) WAS  

Fig. 4: Illustration of four strength maps   

3.5.  Localization of the RNV Region 
We used a strength map to determine the RNV location. The values in the strength map that are above 

the 75th percentile were considered for the candidate regions. Among the candidate regions, the largest 
cluster was the region of interest, R . The location Loc of RNV, was where the strength value, S  is 
maximum within R . The localization process is mathematically defined as in equation (2). Fig. 5 shows 
candidate regions and the predicted RNV location. 

arg max ( , )Loc S x y=  for all ( , )x y R∈                                                   (2) 

  
Fig. 5: Illustration of candidate regions (left) and an RNV location (red dot) on the green largest candidate region (right). 

The result was considered successful when the RNV location lies within or on the ground truth’s 
boundary. The accuracy, the ratio of correct localization to the total number of images, is used for evaluation.  

4. Experiment and Result 
We used 41 SS-OCTA [5] images, each 6 mm square in width, capturing RNV at superficial retinal 

layers sourced from Thammasat University Hospital in Thailand. The ground truth images were hand-drawn 
by experts. We compared our proposed method against a deep learning-based approach (VNet_Li) [11]. For 
convenience, we named our method Strength-Map-based Localization (SML). Four variances of SML from 
four different maps are compared. Fig. 6 illustrates examples of successful localization, and Table 1 depicts 
the accuracy comparison of the RNV localization using four strength maps.  

 
Fig. 6: Examples of localization results from SML based on different strength maps against a comparative method 

VNet_Li.  

Table 1: Comparison of RNV localization accuracies from different methods 
 

Methods 
 

VNet_Li [11] 
SML based on 

VS  BS  EMS  WAS (Proposed) 
 

 
 

Accuracy (%) 53.66 63.41 65.85 65.85 68.29 
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Fig. 6 depicts localization from different methods. Notably, the VNet_Li, one of the comparative 

methods, tends to over-segment, resulting in multiple false locations. The proposed SML based on WAS map 
yielded the highest accuracy compared to other strength maps. The accuracy improvements of SML based on 

WAS over VNet_Li [11], and SML based on VS , BS , and EMS were 14.63%, 4.88%, 2.44%, and 2.44%. The 
failed cases were analyzed and found to be caused by undetectable vessels in dense RNV and 
misinterpretation of similar vessels. Our future work will find efficient vessel detection and noise removal 
algorithms and consider more features, such as vessel thinness and proximity to ischemic areas [2]. 

5. Conclusion 
We've devised an innovative method to precisely locate Retinal Neovascularization (RNV) in superficial 

retinal OCTA images. Our approach combines vessel density and bifurcation density through weighted 
addition, outperforming individual use, elementwise multiplication, and VNet-based localization [11]. This 
method achieves a localization accuracy of 68.29%. However, further algorithm refinement including 
improving vessel segmentation and candidate region selection and considering other RNV biomarkers.  
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