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Abstract. The urbanization of most waterways has led to a significant amount of pollution in the multiple
bodies of water, with mostly floating debris contributing to the environmental threat. The Philippines has
contributed to immense discharge of plastic waste into rivers. Furthermore, the prevalence of invasive aquatic
plants disrupts the ecosystem of the water bodies and affect economic activities. Traditional methods of
monitoring water surface debris are inefficient and resource-demanding. This study proposes the
development of an object detection model based on YOLOVS to identify floating debris on a water surface
accurately and in real-time, including garbage and invasive plants. The researchers created a dataset of
floating debris. Image preprocessing techniques such as resizing, orientation, resizing, contrast adjustment,
and augmentation were done to improve the dataset. The researchers tuned the model in terms of optimizer
using Adam and Stochastic Gradient Descent (SGD), and learning rates of 0.01 and 0.001. Upon evaluation,
the researchers determined that the model using the SGD optimizer performed better than the model using
Adam optimizer in floating debris detection. The researchers further determined that the model performed
best when utilizing the best weights from training and a learning rate of 0.001 with the SGD optimizer.
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1. Introduction

Waterways are essential in the movement of water for purposes such as navigation, irrigation, and
drainage. Floating items on the water's surface of rivers degrade slowly or never at all and will pollute the
environment [12]. The accumulation of water surface debris over time can impede the normal flow of water
in rivers, streams, canals, and other waterways. Recognizing and locating small items on the surface of the
water can enhance the capacity to carry out environmental surveillance, reduce water pollution, or guide
vessels [11]. Waterways in the Philippines are constantly bombarded with water surface debris such as
garbage and invasive plants. The Philippines was responsible for discharging over 356,371 metric tons of
plastic waste every year [10]. Due to the lack of resources and research in the Philippines, there is not much
information available regarding the monitoring of plastic wastes [9].

Monitoring water surface debris can aid in early detection of pollution, environmental assessment, and
detection of debris accumulation. With the advancement of deep learning and computer vision, object
detection has become a reliable tool to automate various human tasks. YOLOVS is a variant of the YOLO
algorithms and has proven to be effective and produce better results when applied to various tasks, such as
underwater object detection [1], pedestrian tracking [2], road defect detection [4], and UAV object detection
[3]. There is a lack of research that focuses on using YOLOV8 for water surface object detection. Thus, the
YOLOVS8 variant is used and explored in the study.

In this paper, the researchers developed an object detection model for the detection of floating debris on
a water surface. The floating debris detected by the researchers were garbage, invasive aquatic plants,
branches, and leaves. The researchers leveraged the YOLOv8 detection algorithm since recent object
detection works using YOLOv8 yielded promising and research on using the algorithm with floating object
detection is limited.
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The primary objective of the study is to develop a YOLOv8 model to accurately identify instances of
water surface debris within waterways. The specific objectives of the study are the following: (1) To develop
a YOLOv8 model that effectively and accurately detects water surface debris using the created dataset; (2)
To evaluate and compare the performance of the YOLOv8 model with varying optimizers and learning rates;
(3) To assess the detection performance of the YOLOv8 model for each class.

2. Review of Related Literature

This section provides an overview of related research studies and literature conducted by researchers
regarding floating debris detection on the water surface through machine learning. The selected and reviewed
literature are discussed.

2.1. Negative Impacts of Floating Debris on Waters

In the study of Meijer et al. [10], the authors found that a significant portion of global emissions are
caused by small and medium-sized rivers and 98.5% of plastic waste stays trapped in terrestrial settings,
where it builds up and gradually contaminates aquatic ecosystems. According to a report by Tekman et al.
[18], 88% of 297 marine species were adversely affected by plastic debris due to entanglement, ingestion,
smothering, and chemical pollution, resulting in the injury or death of marine life. Invasive aquatic plants
also have ecological and economic impacts. Invasive aquatic plants diminish water quality and biodiversity,
inhibit the growth of native plants, elevate the risk of extinction for vulnerable species, alter the overall
guality of the habitat, disrupt commercial navigation, heighten the occurrence of floods, compromise
drinking water quality, and provide a breeding ground for disease-carrying insects [8]. Human resources are
primarily used in monitoring water-floating trash, and cleaning floating trash requires significant amounts of
both human and material resources but is inefficient [19]. Future developments will favor mechanized
salvage methods, with research into floating garbage detection algorithms on the water's surface driving this
trend [17].

2.2. YOLO-based Floating Debris Detection

Obiject detection algorithms are either one-stage or two-stage where two-stage prioritizes accuracy and
one-stage focuses on speed [7]. In applying object detection for real-time tasks, one-stage object detection
algorithms are utilized. The YOLO algorithm uses end-to-end network structure to achieve real-time
requirements with fast detection speed [6]. Studies have focused on utilizing the YOLO series for detecting
floating objects on a water surface. In the study of Jiang et al. [19], an improved YOLOv7 with ACanny
PConv-ELAN and multi-scale gated attention for adaptive weight allocation (MGA) was proposed to detect
floating garbage. The proposed APM-YOLOv7 model outperformed the benchmark YOLOV7, increasing the
mean average precision (mAP) by 7.02% and recall by 11.82%. The study of Lin et al. [20] proposed the
FMA-YOLOV5 algorithm for detecting floating debris in a waterway. The authors concluded that the
proposed model outperforms the YOLOvV5s with an increase in mAP by 2.18%. The authors note that the
model can be used to monitor floating objects but improvements are needed in the detection of blurred and
dense objects. In the study of Zailan et al. [16], the authors utilized YOLOvV4 to detect floating debris for a
riverine monitoring system. The authors compared the performance of the model with and without transfer
learning and concluded that using transfer learning decreases the training time and improves model
performance in terms of mAP, f1 score, average loU, precision, and recall. In a study by Xu et al. [21], a
YOLOW algorithm is developed and proposed to automatically detect water objects. With a learning rate of
0.1%, epoch of 300, and batch size of 20, the authors concluded that the proposed YOLOW algorithm
outperforms the YOLOV5 variants in terms of precision, recall, and mAP by 6.4%, 2.3%, and 4.3%
respectively. To address the issues of traditional image processing techniques for floating debris detection,
Qiao et al [13] proposed an improved YOLOvV5 model. The authors compared the performance of the
proposed model to Faster R-CNN, SSD, YOLOv3, and YOLOv5s, and concluded that the proposed model
outperforming the other models. The studies show the effectiveness of YOLO for object detection tasks.

2.3. Comparing YOLOv8 with YOLO Variants



YOLOV8 processes objectness, classification, and regression tasks separately using an anchor-free model
with a decoupled head [5]. By allowing each branch to concentrate on its specific task, this design enhances
the overall accuracy of the model. In the work of Maity et al. [15], the authors compared the performance of
recent YOLO variants, namely YOLOv5, YOLOv7, and YOLOVS for vehicle detection in terms of precision,
recall, and mAP. With the JUVDsi v1 dataset, the YOLOvVS8 outperformed the YOLOvV5 and YOLOvV7 by a
small margin but all three models performed well with a mAP50 score of 0.755, 0.816, and 8.817 for
YOLOV5, YOLOvV7, and YOLOVS respectively. In the IRUVD dataset, all models were very effective but
the YOLOvV7 model performed the best with a mAP50 score of 0.960 compared with that of YOLOv5 with
0.893 and YOLOvV8 with 0.946. The study of Adegun et al. [14] evaluated object detection algorithms for
detecting objects in remote sensing statellite images. The authors compared the model performance of
Detectron2, YOLOvV5, YOLOv6, YOLOvV7, and YOLOvVS8. The YOLOvVS8, YOLOv7, YOLOvV6, YOLOV5,
and Detectron2 models obtained a precision score of 68%, 54.5%, 53.2%, 53.4%, and 50% respectively, a
recall score of 60%, 46.2%, 47.4%, 49.7%, and 32.7% respectively, a mAP50 score of 43%, 34.1%, 32.1%,
27%, and 16% respectively, and a speed of 0.2ms, 0.3ms, 0.4ms, 0.5ms, and 0.9ms respectively. The authors
concluded that the YOLOvV8 model had superior performance over other models. YOLOV8 has proven to be
effective and produce better results when applied to various tasks, including underwater object detection [1],
pedestrian tracking [2], road defect detection [4], and UAV object detection [3]. YOLOV5 and YOLOv7
were commonly used in the reviewed studies relating to floating object detection and YOLOVS is yet to be
utilized. This provides an opportunity for exploring and implementing YOLOv8 for floating debris detection.

3. Methodology

This section provides an overview of the materials and methods used in the study. The researchers
collected and curated their own dataset of floating water debris. Image preprocessing techniques were
applied to the dataset. The processed data were fed into an object detection model for training and testing.
The researchers optimized the model to obtain the best performance. The methodology encompasses the
following: data collection, data preprocessing, model training and validation, model testing, and model
performance evaluation. The conceptual framework of the study is illustrated in Fig. 1.
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Fig. 1: Conceptual framework of the study

3.1. Data Collection

The researchers curated and created their own dataset for the study. The video of floating debris on the
water surface of the Pasig River was taken in Globe Circuit Event Grounds in the Philippines. The 24.1
megapixel CMOS Canon M50 Mk Il camera was used to capture the video in 1080p Full HD resolution. To
ensure that the floating objects can be clearly seen, the video was taken during daytime. The camera was
positioned at a height of 162 cm from the ground, a distance of 10 feet from the water, and at an angle of 45
degrees all throughout the 19-minute session. The result was a 19-minute video that captured floating debris
on the water surface of Pasig River in a consistent manner.

3.2. Dataset

The researchers utilized the 19-minute video to create their own dataset. The prominent objects identified
were garbage, aquatic plants, branches, and leaves. Hence, these were the classes used in the study.
Roboflow was used to sample the video by 1 frame per second. This resulted in a total of 1144 images. The



instances of each object class in each image were manually counted and totaled and is shown in Table 1. The
dataset had a significant imbalance where branches and invasive aquatic plants were a minority class. To
alleviate the impact of this issue, augmentation was performed resulting in a total of 2746 images.

Table 1: Total instances of each class

Debris Type Total Instance
Garbage 7284

Leaves 2830

Branches 169

Aquatic Plants 149

Total 10432

3.3. Data Preprocessing

The researchers used Roboflow in implementing the data preprocessing methods. The researches first
annotated the images based on the classes of garbage, leaves, branches, and invasive aquatic plants. The
images were auto-oriented and resized to 640 x 640 to ensure better optimization and compatibility with the
model. Auto-adjusting contrast through histogram equalization was performed on the images to improve the
visibility of details and features in the images. The data was split into training, validation, and testing with a
ratio of 70:20:10. Data augmentation was performed on the training dataset to artificially increase its size to
help in addressing the dataset imbalance, model generalization, robustness, and reduces overfitting. The
augmentation techniques performed are shown in Table 2. The dataset consisted of 2403 images for the train
set, 229 images for the valid set, and 114 images for the test set for a total of 2746 images.

Table 2: Data augmentation techniques

Augmentation Technique Type

Flip horizontal, vertical

90 “Rotation clockwise, counter-clockwise, upside down
Rotation -15°to +15°

Shear +-10<horizontal, +-10“vertical

Saturation -25% to +25%

Brightness -15% to +15%

Exposure -10% to +10%

Noise up to 0.1% pixels

3.4. Model Training and Validation

Google colab with a T4 GPU was used to develop the object detection model. The YOLOV8 object
detection algorithm was used in this study for floating debris detection. With the limited dataset, the
researchers opted for a YOLOvV8 model pre-trained with the COCO dataset as opposed to training from
scratch. The model was custom trained with the created dataset using the pre-trained weights with an epoch
of 300 and batch size of 16. The researchers used TensorBoard to note on the performance of the model at
various stages. The researches also used patience which allows for the early stopping of training when there
are no more improvements made. Training was stopped when no improvements were made for the last 50
epochs. After the initial testing and validation, the researchers performed hyperparameter tuning, focusing on
optimizer and learning rate. The process was iterated to determine if the performance of the model could be
improved.

3.5. Model Testing

The model was tested after validation and tuning. The model was evaluated on data that it had not yet
seen during the training process to assess how well it generalizes to new data and estimate its performance in
real-world data. The researchers evaluated the testing performance of the model through mean average
precision at an loU threshold of 0.5 (mAP50), and ranging from 0.5 to 0.95 (mAP50-95), precision (P), recall
(R), 1 Score, and confusion matrix.



4. Results and Discussion

This section presents the results produced by the YOLOv8 model in detecting floating debris. The effects
of varying optimizers and learning rates on model performance is evaluated. The performance of the model
in detecting objects per class is also discussed.

4.1. Impact of Optimizers and Learning Rates

The researchers compared the impact of two optimizers and learning rates to the object detection
performance of the YOLOVS8. The optimizers evaluated were the Adam Optimizer and Stochastic Gradient
Descent (SGD). The learning rates assessed were 0.01 and 0.001. Upon completing model training, YOLOVS8
provides the best weights for the model, as well as the weights used in the last epoch during model training,
so the best and last weights were also compared. The model was pre-trained with the COCO dataset. The
model was trained using 300 epochs, batch size of 16, and patience of 50. These parameters were kept
constant to focus on the influence of the optimizers and learning rates. Table 3 shows the validation results of
the model based on the optimizer, learning rate, and the weights attained from training.

Table 3: Performance of the YOLOv8 model with varying optimizers, weights, and learning rates

Optimizer Weights Learning mAP50 mAP50-95 | Precision Recall F1 Score
Rate
Validation
Adam Best 0.01 0.836 0.405 0.840 0.772 0.805
Adam Best 0.001 0.861 0.453 0.877 0.816 0.845
SGD Best 0.01 0.860 0.473 0.841 0.831 0.836
SGD Best 0.001 0.864 0.470 0.854 0.828 0.841
Testing
Adam Best 0.01 0.819 0.419 0.819 0.746 0.781
Adam Best 0.001 0.854 0.454 0.847 0.797 0.821
Adam Last 0.01 0.005 0.001 0.002 0.094 0.004
Adam Last 0.001 0.869 0.453 0.888 0.844 0.865
SGD Best 0.01 0.850 0.470 0.888 0.826 0.856
SGD Best 0.001 0.872 0.467 0.882 0.855 0.868
SGD Last 0.01 0.851 0.467 0.879 0.832 0.855
SGD Last 0.001 0.859 0.462 0.892 0.812 0.850

In the validation, the performance of the model when using the Adam optimizer improves in all metrics
when learning rate is reduced to 0.001. Meanwhile the performance of the model using the SGD optimizer
varies according to the metrics when learning rate is reduced. Although the mAP50, precision, and the f1
score of the model is improved, the map50-95 and recall of the model is reduced. In testing, the SGD
optimizer obtained better performance scores than the Adam optimizer based on the evaluation metrics. The
model with the SGD optimizer with a learning rate of 0.001 and with the best weights obtained from the
training obtained the highest scores in mAP50 with 0.872 or 87.2%, recall with 0.855 or 85.5%, and f1 score
with 0.868 or 86.8%. But it achieved higher scores in precision using the last epoch weights from training at
0.888 or 88.8%, while it achieved a higher Map50-95 score with the best weights and a learning rate of 0.01
at 0.470 or 47%. Meanwhile, the model using Adam optimizer had best performance with a learning rate of
0.001 and the last epoch weights from training with a mAP50 score of 0.869 or 86.9%, precision score of
0.888 or 88.8%, recall score of 0.844 or 84.4%, and f1 score of 0.865 or 86.5%. It can be observed that
decreasing the learning rate improves the model, in terms of the mAP50, mAP50-95, precision, and recall
when using the Adam optimizer, whereas improvements in the SGD optimizer are observed in mAP50, recall,
and f1 scores when using the best weights from training. The model using SGD outperforms the model using
Adam optimizer in almost all cases when both optimizers use the same parameters. It is important to note




that the model was run with 300 epochs but performed early stopping when no improvements from the latest
50 epochs are identified. As such, the model training stopped at 170 epochs when using the SGD optimizer
0.01 learning rate and best results were observed at epoch 120. With SGD and a learning rate of 0.001,
training stopped at 123 epochs where best results were observed in epoch 73. With Adam and a learning rate
of 0.01, training completed with 151 epochs and best results were observed at epoch 101. Lastly, with Adam
and a learning rate of 0.001, training was stopped after 152 epochs where the best results were obtained in
epoch 102.

4.2. Evaluating the Object Detection per Class

Table 4: Model performance in detecting each class

Class Best Adam (Ir=0.01) Best SGD (Ir=0.01)
mAP50 | mAP50- | Precision | Recall | F1 mAP50 | mAP50- | Precision | Recall | F1
95 Score 95 Score
Aquatic | 0.995 0.634 0.762 1 0.865 | 0.995 0.749 1 0.95 0.974
Plant
Branch 0.936 0.489 0.929 0.812 | 0.867 | 0.959 0.534 0.910 1 0.953
Garbage | 0.568 0.222 0.791 0.445 | 0.570 | 0.639 0.246 0.806 0.558 0.659
Leaf 0.778 0.331 0.796 0.726 | 0.759 | 0.807 0.349 0.834 0.797 0.815
Class Best Adam (Ir=0.001) Best SGD (Ir=0.001)
mAP50 | mAP50- | Precision | Recall | F1 mAP50 | mAP50- | Precision | Recall | F1
95 Score 95 Score
Aquatic | 0.995 0.680 0.938 1 0.968 | 0.995 0.667 1 0.994 0.997
Plant
Branch 0.939 0.553 0.830 0.875 | 0.852 | 0.991 0.605 0.941 1 0.970
Garbage | 0.633 0.236 0.786 0.507 | 0.616 | 0.660 0.252 0.760 0.594 0.667
Leaf 0.848 0.348 0.833 0.805 | 0.819 | 0.841 0.342 0.828 0.832 0.830
Class Last Adam (Ir=0.001) Last SGD (Ir=0.001)
mAP50 | mAP50- | Precision | Recall | F1 mAP50 | mAP50- | Precision | Recall | F1
95 Score 95 Score
Aquatic | 0.995 0.674 0.992 1 0.996 | 0.995 0.659 1 0.958 0.979
Plant
Branch 0.980 0.556 0.941 0.990 | 0.965 | 0.984 0.605 0.912 1 0.954
Garbage | 0.635 0.235 0.758 0.561 | 0.645 | 0.642 0.238 0.811 0.534 0.644
Leaf 0.865 0.347 0.862 0.825 | 0.843 | 0.814 0.347 0.846 0.756 0.798

Table 4 shows the performance of the model in detecting each class based on the specific optimizer and
learning rate. It can be observed that the model can effectively detect aquatic plants with both optimizers and
with varying learning rates. This can be attributed to the size of the aquatic plants, which aids the model in
terms of visibility. The model achieves a constant 0.995 or 99.5% mAP50. The model using SGD
outperforms the model using Adam in terms of precision, obtaining a constant 1 or 100%. Meanwhile the
model using Adam optimizer outperforms the model using SGD in terms of recall, also obtaining a constant
1 or 100%. The model can also effectively detect branches as shown in the high metric scores. The model
using the SGD optimizer with a learning rate of 0.001 and with the best weights from training perform the
best in distinguishing branches as shown in the obtained metric scores with an mAP50, mAP50-95, precision,
recall, and f1 score of 0.991 or 99.1%, 0.60 or 60.5%, 0.941 or 94.1%, 1 or 100%, and 0.970 or 97%
respectively. The model struggles to detect garbage, despite the class with the most number of instances in
the dataset. Garbage detection peaked its highest at only 0.660 or 66.6% map50 with the model using SGD
optimizer with the best weights and learning a rate of 0.001. The model was able to detect leaves better than




garbage as shown. The Adam optimizer with the last epoch weights and a learning rate of 0.001 obtained the
highest map50 for detecting leaves at 0.865 or 86.5%. In reviewing the images, the annotated garbage
instances were small and blended with the water which may have limited the capacity of the model to detect
the garbage instances effectively. Furthermore, a 25% confidence rate was implemented to avoid detection of
unlikely images. Because of this, tiny garbage instances, as well as other small objects, did not reach the
specified confidence interval to be detected. Fig. 2 shows inference images of the model detecting floating
debris using the SGD optimizer.
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Fig. 2: Floating Debris Detection of YOLOv8 model using SGD Optimizer
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Fig. 3: Confusion Matrices of YOLOv8 Model using Adam with 0.01 and 0.001 Learning Rates
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Fig. 4: Confusion Matrices of YOLOvV8 Model using SGD with 0.01 and 0.001 Learning Rates

The figures above present the confusion matrices of the model using Adam and SGD with 0.01 and
0.001 learning rates. In Fig. 3, the model accurately detected and classified all instances of aquatic plants.
Branches were also identified but some were misclassified as garbage. Leaves were properly detected but
some were misclassified as garbage and branch. The model struggles to detect garbage. Although numerous
instances were correctly classified, the model misclassifies the other as background, attributed by the tiny
instances of the garbage and the influence of the water where the debris floats. In Fig. 4, the model using
SGD show better performance. Branches were effectively identified by the model but an instance of the
aquatic plant was misclassified, and instances of leaves were misclassified as garbage or background. This
can be attributed to the small size and color of leaves which may closely resemble instances of garbage.



Garbage was also misclassified by the model but in lesser instances compared to the model using Adam. The
model struggles to differentiate garbage instances with the water which can be attributed to the similarities in
color as the water surface of the Pasig River is slightly dark while garbage like plastics is transparent.
Furthermore, the waves in the river submerges instances of garbage reducing vision. Overall, the model
using SGD optimizer performs better in the object detection task against the Adam optimizer, especially with
a learning rate of 0.001 and using the best weights from training.

5. Results and Discussion

5.1. Conclusion

The researchers utilized YOLOv8 to develop a model for floating debris detection on waterways. The
researchers created their own floating debris dataset and utilized it to train the object detection model. To
improve the dataset, the researchers performed preprocessing and augmentation techniques, improving the
guality of the data and increasing the size of the dataset. The researchers acknowledge the limitation of the
created dataset due to the imbalance between classes. The researchers successfully compared the
performance of the model using SGD and Adam optimizers, and 0.01 and 0.001 learning rates. The
researchers also successfully assessed the performance of the model for each surface debris class. The results
show that the model using the SGD optimizer performs better overall than the model using the Adam
optimizer. The model with the SGD optimizer with a learning rate of 0.001 and with the best weights
obtained from the training obtained the highest score in mAP50 with 0.872 or 87.2%.The researchers
determined that the model using the SGD optimizer produced less errors in detecting and classifying the
floating debris objects. The researchers determined that the capacity of the model to accurately detect
floating debris is influenced by the size and color of the object. Tiny objects and those resembling water
exhibit low confidence, failing to meet the necessary minimum confidence threshold of 25%. The model
with the SGD optimizer, best weights, and a learning rate of 0.001, can effectively be used to detect floating
debris on waterways.

5.2. Recommendation

The researchers noted on the limitations of the created dataset, especially due to its significant imbalance.
The dataset was collected in a very controlled approach to ensure that images were clear and constant. The
dataset also consisted of only four classes. The researchers recommend creating a dataset of floating debris
by collecting new data and integrating more classes. It is recommended to collect data with more variations
such as taking images from various time of the day, different camera positions and angles, and different
lighting. It is also recommended that the classes must be balanced and represented by sufficient images as
this will aid in model development. The researchers also recommend exploring more image preprocessing
techniques to improve the quality of the dataset, such as using deep learning methods to artificially enhance
image quality. In the study, the optimizer and learning rate were the only parameters tuned. It is
recommended to fine-tune the object detection model with more hyperparameters such as batch size, anchors,
epochs, momentum, and weight decay to improve model performance. It is also recommended to explore
different deep learning object detection algorithms for detecting floating debris in waterways and compare
the performance with the proposed YOLOvV8 model. The model can be still be improved and incorporated in
applications to effectively implement real-time detection of floating debris on waterways, especially in areas
where floating debris is prevalent.
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