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Abstract. A self-learning target pose estimation method based on RGBD images is proposed to improve
the robustness and applicability of 6DoF object pose estimation for augmented reality assembly guidance.
The method is built on a self-supervised approach, using a dataset annotation module to create pseudo-labels
for actual data and fine-tune the posture estimate model to accommodate changes in the realistic data
distribution. The dataset annotation module uses an Iterative Closest Point (ICP) to solve for the target pose
of a single frame and SLAM to locate the camera pose to infer the global pose of the target, in addition to the
local pose in various camera spaces. The pose estimation model uses target detection techniques to coarsely
segment the image and a dense fusion network to extract multisource features, predicting the target’s pose
and semantic segmentation results. The labeling rate of the dataset in real scenarios is 36 frames per minute,
and the AUC of 6DoF pose estimation is 3.72% higher than that of existing algorithms. According to
experimental findings, the self-learning pose estimate method can well adjust to new environments.

Keywords: 6DoF pose estimation, data annotation, deep learning, feature fusion.

1. Introduction

Six-degree-of-freedom (6DoF) object pose estimation is the basis of real-world applications such as
robotic grasping and manipulation [1], autonomous driving [2], and augmented reality [3]. Most pose
estimation methods perform well when dealing with objects with different shapes and textures, sensor noise,
and variable illumination conditions. However, it is difficult to maintain an algorithm’s robustness and real-
time performance in highly dynamic augmented reality applications.

Traditional techniques use templates designed artificially to solve the 6DoF pose of objects [4], and are
only suitable for scenes with apparent features and no dynamic objects. The deep learning convolutional
neural network (CNN) approach extracts the sophisticated semantic properties of images by learning a vast
quantity of label data. Its accuracy is far beyond that of the traditional artificial feature extraction method,
and it provides a new idea for target pose estimation. YOLO-6D [5] uses RGB data as input, predicts the
target’s 2D keypoints, and uses a Perspective-n-Point (PnP) algorithm to complete 6DoF pose estimation.
However, RGB data lack spatial geometric constraints, and the predicted keypoint locations may overlap. He
et al. [6] proposed a method using a PVN3D network to extract target geometry information from a depth
image, densely fuse texture and depth multisource features to predict target 3D keypoints, and match them
with corresponding 3D model keypoints to obtain pose information. However, the keypoint filtering strategy
affects pose prediction accuracy. Wang et al. [7] proposed the use of multisource fusion features by
DenseFusion for end-to-end target position prediction, but the algorithm requires complex semantic
segmentation training and preprocessing. Most of the existing methods is trained with full supervision, and
its performance is closely related to the quality of the dataset [8]. When there is a significant difference
between the distribution of the training set and the actual scene data, prediction ability decreases
dramatically, and it is complicated to label the realistic pose dataset [9]. Self-supervised learning [10] uses
assisted tasks to analyze the information of the dataset itself, automatically builds data pseudo-labels, and
reduces labor consumption. It has the potential to replace fully supervised learning in characterizing learning.
Mitash et al. [11] arranged multiple cameras to complete semantics segmentation and point cloud fusion of
multiple perspectives, automatically generate posture data labels, and supervise model training. However, the
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method requires real-time calibration of the relative postures of multiple cameras. Ruan et al. [12] analyzed
the motion constraints of continuous data frames and supervised the predicted posture results according to
the epipolar geometry constraint between feature pairs. However, this scene is only suitable for camera
posture tracking, and not the 6DoF object posture-solving task.

This paper presents a self-learning pose estimation method based on RGBD data, which uses a dataset
construction method as an assistive technology to automatically build data pseudo-labels and optimize the
posture estimation model. The self-learning pose estimate method can solve the complex problems of data
annotation and pose solving in real scenarios, thus improving the accuracy and robustness of the target pose
estimation algorithm in an AR assembly environment.

2. System Overview

Fig. 1 shows the workflow of the algorithm. The pose estimation method uses a self-supervised training
strategy in the offline phase. The actual data labeling work is used as an auxiliary task to automatically
construct pseudo-labels and provide data for the pose estimation model. The data annotation module uses a
pretrained pose estimation model to predict the initial label values of the actual data, and a dataset
construction method to reconstruct the predicted labels to optimally generate pseudo-labels. The 6DoF pose
estimation module uses the actual data and pseudo-labels to fine-tune the pose estimation model parameters,
update the extracted RGBD fusion features, and predict the data’s pose and semantic segmentation results.
Self-learning posture estimation can automatically label actual data, expand datasets, fine-tune model
parameters, and continuously learn to adapt to the data distribution of new scenarios. The assembly guidance
animation in the AR environment is displayed in the online phase based on the target position result, and the
visual assembly guide is realized.
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Fig. 1: Workflow of the algorithm.

2.1. Real data annotation module

The current semi-automated data annotation method for arranging and calibrating multiple sensors is
time-consuming. Automatic positional localization replaces manual calibration for multiple sensors by
combining a single camera with Simultaneous Localization and Mapping (SLAM) [13]. By calculating the
target's pose in a single frame, with SLAM to locate the camera pose in different frames, the global pose of
the target and the local pose labels in different frames can be inferred.

The real data annotation method takes the target local pose Rt. and the semantic segmentation mask from
the prediction results of the pretrained pose estimation module as initial values and uses the Iterative Closest
Point (ICP) point cloud registration algorithm to calculate the pose transformation relationship between the
target and the corresponding 3D model.

Fig. 2 shows the data annotation process. The method takes the initial values of the local pose Rt. and the
segmentation mask predicted from a single frame (corresponding to camera pose Rf.».), and uses the 3D
model as the alignment target for ICP optimization to obtain the optimized local pose Rt icp,

Rt. . =ICP(Rt) (1)

c_icp

Considering the relative vagueness of the mask information mask and the corresponding point cloud
information, it is impossible to determine the optimization results’ accuracy. The semantic segmentation
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results and corresponding camera poses are used to construct the whole multiview point cloud fusion
information as the alignment target. Then, the optimized global posture Rt i, is obtained after the second
ICP optimization,

Rt = ICP(RtCZW * RtCJ'CP) (2)

w_icp
The positional transformation relationship between the global pose Rt i, and local pose Rf.; is solved
according to the camera pose R¢; of the different frames,
— Ry Lk
th[ - Rtt Rtwiicp (3)

Finally, the image's local pose, mask, and bounding box information are automatically labeled according
to the 3D model and local pose information.
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Fig. 2: Real data labeling process.

To initialize the model parameters in the pose estimation module requires the use of physical simulation
technology to build a dataset training model for the first time, and to subsequently fine-tune the model using
actual data and pseudo-labeling.

2.2. Target pose estimation module

The target pose estimation module is based on DenseFusion [7]. A pose estimation model, 6DPoseCNN,
is constructed to meet the model’s need for complex semantic segmentation preprocessing and a fixed input
scale. The 6DPoseCNN model improves image data rough segmentation preprocessing, variable point cloud
feature extraction, and semantic segmentation prediction.

(1) Model structure

Fig. 3 shows the structure of 6DPoseCNN. The network model includes target detection, feature
extraction, posture prediction, and a posture optimization module.

Data segmentation preprocessing can filter redundant background information to make the model focus
on extracting target features. The annotation information of the target detection box is more accessible than
the semantic segmentation annotation information. Therefore, the target detection module (YOLO [14])
replaces the semantic segmentation module for data preprocessing to solve the problem of complex
annotation of the semantic segmentation data.

The scale of the input data in the feature extraction module varies due to the range of the target detection
results, and RandLA-Net [15] can extract geometric features from the input point cloud at various scales.
Because global features in the feature fusion module tend to introduce background noise and interfere with
the extraction of target features, only local features of target geometric information are extracted, using
multilayer convolution. Batch Norm is added after the convolution layer to accelerate network training and
prevent gradient explosion in backpropagation. However, the input data scale is inconsistent, and the batch
scale can only be 1. A smaller batch scale increases the error rate [16], so Group Norm, which is not related
to the batch scale, is used as the batch operation.

There is some background information in the target detection module’s pre-segmentation results, so it is
necessary to add semantic segmentation subtasks in the pose estimation model to eliminate background
interference. Therefore, the semantic segmentation subtasks Ms are constructed using multilayer convolution
to predict the category information of each pixel.
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Fig. 3: Overview of pose estimation model.

(2) Loss function

Compared to the single-task supervision of DenseFusion, 6DPoseCNN adds a semantic segmentation
subtask and requires multitask supervised training. To synchronously supervise the pose prediction and
semantic segmentation sub-task, a 6DPoseCNN multitask loss function L is constructed,

L=wLct+w,Ls 4)

where Lct is the loss function of the pose estimation task, Ls is the loss function of semantic segmentation
tasks, and w; and w; are the weights of the subtasks, where we take w;=w>=1.0 [6,20].

To supervise the training of the positional estimation subtask, we use the DenseFusion loss function Lct,

N
Let = %Z (L c, —wlog(c,))
i=1
()
Lobj _L < _ R
(A M ZH (Rx_j +t) ( i +ti) ||
j=1

where M denotes the point cloud of the category obj model that has been downsampled, N is the number of
pixels belonging to category obj in the image, R and ¢ denote the label poses, R; and ¢ denote the predicted
poses of the corresponding pixel positions, ¢; is the confidence level of the corresponding pixel prediction,
and w is a hyperparameter.

To supervise the training of the semantic segmentation subtask, the semantic segmentation loss function
Ls uses a standard multi-category loss function, Focal Loss [17],

Ls=-(1-p,;) log(p,,) (6)
where p is the probability of the pixel prediction category obj, and y is a hyperparameter.

3. Experimental Results and Analysis

In a pose estimation experiment, the RGBD camera in the Microsoft HoloLens2 helmet was used to
collect actual scene data, where the resolutions of the depth image and RGB image were 320 x 288 and 760
x 428, respectively, and the resolution after alignment with the depth image was 320 x 288. An NVIDIA
Quadro K2200 (4G) GPU was used for accelerated training of the deep learning network. The model was
built using the deep learning framework PyTorch 1.8. The Adam optimizer was used, the batch size was 1,
and the iteration cycle (Epoch) was 60..

3.1. Self-learning process performance evaluation

To evaluate the impact of the self-learning process on model performance, the experiment had three
stages, collecting 389, 415, and 429 frames of data, with differences in light intensity. The data in these three
stages were used to conduct two self-learning tests for changing scenes. The first self-learning process used
all the data from the first stage to train the 6DPoseCNN model, while 2/3 of the data from the second stage
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were randomly selected for fine-tuning, and the remaining 1/3 were used for testing. The second self-
learning process used the data from the first and second stages to train the 6DPoseCNN model, randomly
selecting 2/3 of the data from the third stage for fine-tuning, and the remaining 1/3 of the data for testing.
The accuracy threshold curve with a maximum threshold of 0.1 m was drawn [18]. The area under the curve
(AUC) was used as the evaluation criterion of pose estimation, whose increased significance indicated a
better pose estimation effect. The impact of data fine-tuning on the performance of the pose estimation
model in the self-learning process is shown in Table 1. “(No) fine-tuning” indicates whether fine-tuning data
were used to optimize the model. It can be seen that the performance after fine-tuning was better than before.
The self-learning process of the fine-tuning model could improve its adaptability to new scenes.

Table 1: Effect of data fine-tuning in the self-learning process on the performance of the pose estimation model.

Process Data volume | Training set Test set AUC
Initialize model 389 389 -- --
First self-learni
irst se earnmg process 415 B 139 8730
(no fine-tuning)
First self-learning process
. 415 276 139 95.76
(fine-tuning)
S d self-learni
econd se earmr.lg process 429 3 143 87.08
(no fine-tuning)
S d self-learni
econd se earr?lng process 429 286 143 9575
(fine-tuning)

3.2. Dataset construction performance evaluation

The construction of the actual scene dataset has seven stages: data collection, target detection box
annotation, initial pose prediction, and semantic segmentation, manual selection, ICP local optimization,
point cloud fusion and ICP global optimization, and positional solution for each viewpoint, where the first
four involve data acquisition and preprocessing. Table 2 shows the time consumption of each execution
phase, based on 400 actual data annotations. The manual data annotation method took 29.51 min, and the
annotation rate was 13 frames per minute, where target detection box annotation (manual annotation) took
the most time. To further improve the data annotation rate, the YOLO model was used instead of manual
detection frame annotation to predict the results. Data annotation based on the target detection model took
11.01 minutes. The annotation speed was 36 frames per minute, which was 2.6 times greater than manual
data annotation.

Table 2: Labeling process and time consumed/min

Manual data annotation Data annotation based on target
Process .
method detection
Data collection 2.00 2.00
2 Target detection box annotation 20.00 2.00
Initial dicti d ti
3 nitial pose predic 1og and semantic 4.00 4.00
segmentation
4 Manual selection 0.50 0.00
5 ICP local optimization 0.01 0.01
Point cloud fusi d ICP global
6 oint clou .51(?n afl globa 200 500
optimization
7 Positional solution for each viewpoint 1.00 1.00
-- Total time 29.51 11.01

To compare the effects of target detection box annotation methods on data annotation, different detection
criteria were used to evaluate the similarity of the two label results. Using Intersection over Union (IOU) [14]
to evaluate the effect of target detection box annotation, the similarity of such labels reached 97.89%; using
AUC to evaluate the effect of pose annotation, the similarity reached 98.13%. The experimental data show
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that target detection-based data annotation had excellent annotation results and a fast annotation rate, and
could quickly provide label data for self-supervised training.

3.3. Pose estimation model performance evaluation

The data of pose estimation model evaluation experiment came from HoloLens2 to collect the RGBD
data of the actual scene and used the dataset construction method to generate the corresponding real scene
dataset. The dataset contained 1233 frames, with 986 frames for training, and 247 for testing. The loss
convergence curve of the 6DPoseCNN training process is shown in Fig. 4. The training process has two
stages: (1) prediction, where the posture optimization module does not participate in training and prediction;
(2) pose optimization, where the posture optimization module is trained and the other modules are frozen.
Fig. 4 can be seen that the pose optimization process saw rapid convergence of the loss curve after
initialization. The Average Distance of Model Points (ADD) was used to evaluate pose error. If the ADD
was < 2 cm, the pose estimation was correct [7]. The accuracy of 6DPoseCNN pose prediction was 98.8%.
The pose prediction results of some data in Fig. 5 show that the model point cloud overlapped well with the
target point cloud.
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Fig. 4: Loss convergence curve of 6DPoseCNN.
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Fig. 5: Part of data, with corresponding pose prediction results.

To further evaluate the performance of pose estimation algorithms, the ADD less than 2 cm and AUC are
used as the evaluation criteria for pose estimation of different algorithms. The comparison results are shown
in Fig. 6 and Table 3, from which it can be seen that the 6DPoseCNN model had the best comprehensive
effect, with prediction pose error superior to that of other algorithms under different thresholds. Compared
with the DenseFusion model, the prediction accuracy AUC was increased by 3.72%. The experimental
results of PVNet [20] were inferior to those of the pose prediction model with RGBD as input because it only
used RGB as input, which lacks the depth geometry information, and the predicted 2D keypoints tend to
overlap. As a pose estimation model with RGBD input, MaskedFusion [21] introduced geometric depth data
and used this as an expanded dimension of texture data features without considering the influence of
geometric feature information. PVN3D [6] used different CNNs to analyze texture and geometric features
and used a multisource feature fusion mechanism to extract the target's keypoints and solve the pose-
matching relationship with the keypoints of the 3D model. However, the keypoint extraction strategy
affected the performance of the algorithm. DenseFusion [7] used the fusion features of texture and geometry
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through a multisource fusion mechanism to directly regress the target poses, and an iterative module to
optimize the prediction results. However, its fixed input was prone to missing key information during
downsampling. The extraction of global features was prone to introducing background noise. The pose-
prediction results relied heavily on the data preprocessing effect of semantic segmentation, and thus failed to
obtain higher-quality results.

Table 3: Accuracy of pose estimation with different algorithms.
PVNet [20] | MaskedFusion [21] | PVN3D [6] | DenseFusion [7] Ours
ADD (<2 cm) 53.84 86.63 74.09 97.16 98.80
AUC 77.53 86.07 84.94 90.91 94.63
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Fig. 6: Accuracy of posture estimation with different algorithms.

3.4. Enhanced assembly effect display for typical scenarios

With the AGILEX SCOUT MINI robot as the assembly target, an AR-based assembly assistant system
was developed. The system used a Microsoft HeloLens2 helmet as an enhanced display device and
HelmetSceneGraph (HSG) for three-dimensional graphics rendering and as an image processing engine.
During the experiment, the robot was kept motionless, and the Hololens2 helmet was moved to obtain the
display effect of assembly guidance information from different viewpoints and distances. The experimental
results are shown in Fig. 7, where Fig. 7a shows the target robot, according to which the dataset was
constructed, the pose estimation model was trained, and the poses in the augmented reality space were
predicted. Fig. 7b shows the target’s pose-estimation results, and overlays the target assembly information
based on the target’s 6DoF poses. The HoloLens2 was moved to change its viewing angle with the target to
obtain the registration results of the guidance information under different viewing angles (as shown in Figs.
7¢ and 7d). The diagram shows that the posture estimation algorithm achieved good pose estimation results.
Figs. 7e and 7f show the guidance screen of the disassembly process, which is marked with dynamic
guidance information to determine the position of the tires and screws of the parts to be disassembled.

Fig. 7: Posture prediction results in augmented reality scenes.
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4. Conclusion

In this paper, we presented a pose estimation method for an AR mechanical assembly assistant system.
The method used a self-supervised training method, combined with a dataset construction method to quickly
annotate data, in addition to using new data to optimize 6DPoseCNN to adapt to changes in the scene data
distribution, for achieving the goal of continuous learning. The introduction of SLAM technology in the
dataset construction phase overcomes the problem of multi-sensor placement and mutual calibration. We
used 6DPoseCNN to solve the problem of assembly environment complexity and posture prediction
accuracy. Experimental results showed that the self-learning pose estimation method had better adaptability
to changing scenes, the AUC could reach 94.63% on real datasets, and the method could realize better
accuracy in the disassembly process based on the AR assistant system. Because the dataset construction
method needs to be analyzed using a 3D target model, this poses estimation method is limited to scenes with
a 3D target model.
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