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Abstract. Developing algorithms for global optimum seeking of non-convex optimization problems has 

special potential in the real world. Previous researches in this field suffer from resulting a local optimum or 

losing some accuracy by convex relaxation. In this paper, we consider a demand side management (DSM) 

problem in direct current (DC) distribution networks as an application to study the global optimum seeking of 

non-convex optimization. Due to the voltage and network constraints, non-convexity appears in the objective 

function taking into account the tradeoff between the operation costs and users' preferences. By the freedom 

to express learning problem as a non-convex optimization, we explore a deterministic policy gradient (DPG) 

based algorithm to calculate the global optimum. A policy network and a polynomial regression critic are 

built to learn the optimal policy under an exploration noise. Numerical results are provided to demonstrate 

the DPG algorithm increasing the probability of convergence to the global optimum. 

Keywords: Distribution networks, Demand-side management (DSM), Deterministic policy gradient, 

Reinforcement learning 

1. Introduction
With the development of electronic technology and distributed energy sources, direct current distribution

networks have become a popular research area. The power supply reliability can be increased and the 

transmission losses can be decreased, due to the ability of accommodating distributed energy generation, 

renewable resources and electric vehicles of distribution networks [1]. If loads are considered as controllable 

power electronic loads (PELs), they can be adjusted to reduce the peak power and alleviate the fluctuations 

from distributed generations.  

In this paper, we develop the relationship between the PEL loads, bus voltage and the real power of each 

bus in distribution networks, based on the model in [2]. Then we formulate a demand-side management 

(DSM) problem as an optimization problem. It is easy to solve this DSM problem because the bus voltage is 

the main factor that matters and we don’t need to consider the power and the resistance. 

However, this DSM problem is a non-convex optimization problem. Previous studies have been focused 

on using certain optimization methods to solve different types of non-convex problems, such as branch and 

bound methods [3], particle swarm optimization (PSO) [5] and trust region methods [6]. However, it takes a 

long time to calculate the results. They also fail to consider the online solution. Reinforcement learning (RL) 

is a kind of machine learning algorithm aiming at learning the optimal policy from dynamic interaction 

process with the environment. RL algorithms don't learn from stable databases. In the RL framework，a 

decision maker can choose action at possible states/scenarios and get reward from the environment. Then, 

based on the reward, the decision maker will learn which action/policy is better because it wants to 

maximize/ the cumulated discounted reward. With the development of RL, more and more researchers are 
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focusing on using RL to solve optimization problems, such as storage system management in smart-grids [7], 

on-line demand response of smart buildings [8] and non-convex economic dispatch problems [9].  

In this paper, the DSM problem requires an optimal control policy of voltage for each PEL bus, which is 

a continuous variable. Thus, we focus on a RL algorithm called deterministic policy gradient (DPG) [10] and 

its latest development combined with deep neural networks (DDPG) [11]. The reason why DPG is chosen to 

solve our proposed DSM problem are as follows. 

 The deterministic policy is compatible with the voltage control in distribution network. 

 The state space and action space of DSM problem are continuous. 

The rest of the paper is organized as follows. In section 2, we develop a voltage model of PEL units and 

formulate the DSM optimization problem. In section 3, we propose a DPG based optimal algorithm and use 

it to solve the DSM problem. Section 4 gives the numerical results. Conclusions and future works are given 

in Section 5. 

2. Review of Formulation of Demand-side Optimization Problem 
The model in this work comes from our previous work [12]. For purpose of demonstration, we give the 

model below. 

We consider a distribution network that contains a group of DC buses denoted by . Each bus can 

connect a combination of fixed load or PELs. As for PELs, we regard PELs as adjustable resistances 

connected with the bus through a convertor. And they can be controlled to meet the objective. We denote the 

load buses as , non-load buses as ,  fixed load buses as ,  PEL buses as , buses with distributed 

generations as . For bus i , i  denotes neighbouring buses of bus i .   

 

Fig. 1: An illustration of Kirchhoff’s law, load bus and non-load bus. 

As shown in Fig. 1, based on kirchhoff’s current law, the relationship between bus voltage and load is: 
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where nV represent the voltage of bus n , pP  represent the power of bus p , pR is the load resistance, pkc  

and pd  are coefficients. The object is to minimize the preference of each node and transmission loss: 
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where ,p refP is the expected power level of PEL p , p  is positive parameter represent the buses’ 

tolerance due to load control,   is a positive constant and klR  denotes resistance between bus k and bus l .   

As for constraints, we consider the power sources capacities, current constraints of feeder line and 

bounds of PEL by (3)-(5), respectively. 
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The DSM problem is: 
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V

V J V
                                                            (6) 

Subject to:           (3)-(5) 

3. DPG based Algorithm for DSM Problem 
Deterministic Policy Gradient (DPG) method is the limiting case of stochastic policy gradient method 

[13] as the policy variance of the stochastic policy tends to zero. Thus, it is capable to solve real physical 

control problems. The DPG algorithm usually has an Actor-Critic (AC) [14]. 

In this paper, we formulate the DSM problem as an one-step decision making problem, which is similar 

to the continuous bandit problem [15]. We consider state s , and 1, 2, ,[ , , , ]ref ref p refs P P P  consists of the 

power reference refP  of each PEL bus. We consider action a , and 1 1( ) [ , , , ]pa s V V V   consists of 

the continuous voltage of each PEL bus. As for reward ( , )r s a , which is equal to the value function ( , )Q s a   

in one step problem, We formulate it as the system cost (objective function) by (2): 

 
( ) ( ) ( , ).J V J Q s a

 
                                                     (7) 

In our study, the main objective is to gain the optimal voltage control policy for minimizing the system 

cost. The system constraints are used to check whether the action we take is rational. . 

As for the actor (policy network), the target policy is a deterministic policy ( )s with the parameter 

vector .However, the DPG method may lead to a suboptimum easily due to the lack of efficient exploration. 

To arise exploration, we propose a novel exploration noise based on the Ornstein-Uhlenbeck noise [11]: 

 1 (| | | ( ) | )*t t t tW                                                      (8) 

where t denotes time, and   is the random noise which is related to the time t .   represents the 

expectation of stochastic process, and tW  is a random variable.   and   are parameters related to the shape 

of noise.   is a random variable selected from { 1,1} .As shown in Fig. 2, the novel noise changes with time 

t  and finally converges to the expectation value  . 

 

Fig. 2. Novel O-U noise with one-dimension. 

As for the critic, considering the inaccuracy of model coefficient and computational complexity with 

high dimensions, we would like to build a real simulation system and sample the real voltage and power data. 

Then we can approximate the true ( , )Q s a
such that ( , ) ( , )Q s a Q s a   by using polynomial regression or 

deep neural network. If the dimension is not high, we can obtain the action-value function by using (2) 

directly as mentioned.  The gradient of objective function is as below: 

                         ( ) ( )( ) ( ) ( , ) | ( ) ( , ) |a a s a a sJ V s Q s a s Q s a
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Based on the gradient of objective function, the parameters of policy can be updated by: 

 1 ( )( ) ( , ) |t t t a t t a ss Q s a



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                                       (10) 

Where   is the learning rate and 0  . 

 

Fig. 3.  (a) Distribution network with 2 buses. (b) The non-convex objective function curve. 

To solve the DSM optimization problem, we design an algorithm expressed as Algorithm 1. In each 

episode, we firstly initialize the noise   and parameter vector   randomly. And in each iteration step t of 

episode m , we calculate the policy based on the parameter vector   and add the noise to the policy. Then 

we obtain the action-value function ( , )Q s a
. Based on the gradient of objective function in (9), we update 

the   by (10). The process is repeated until the change in policy 
m

 is negligible. Then, we store this 

policy
m

 . Finally, we compare different 
m

   and find out the best policy from them. 

 

Algorithm 1 DPG Based Algorithm for DSM Problem 
Require: 
      Initialize the distribution networks parameters 

, 0,  ,  ,  ,  s

i i ref pV P R   ; 

      Initialize the maximum iteration episode M , and the maximum iteration step T ; 

      Initialize the state s= 1, 2, ,[ , , , ]ref ref p refP P P   ;  

Ensure: 
      PEL bus voltage V


 ; 

   1:  Calculate the feasible set of action a by constraints (3)-(5); 

   2:  for 1m   to M do   

   3:       Initialize a random process  for action exploration; 

   4:       Randomly initialize the policy 1 2( ) [ , , , ]ps V V V    with parameter  ; 

   5:       for 1t   to T  do 

   6:            Take action at state s using the behavior policy with  noise updated by (8)  

   7:             Obtain the action-value function by equation (2); 

   8:             Calculate the gradient of cost by (9); 

   9:             Update parameter  by (10); 

   10:     end for  

   11:     Store the policy 
m

  of episode m ; 

   12:  end for  

   13:  Select the best policy from all the 
m

  
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4. Numerical Result 
We demonstrate the performance of Algorithm 1 in a distribution network, as shown in Fig. 3(a). The 

distribution network has two buses.  

Bus 1 is power source bus, while bus 2 is a PEL bus. The voltage of bus 2 is denoted by 2V . We set the 

initial resistance 2 2R   , 2, 1refP  , 1   and 2 2  . Due to the constraint of power source capacities and 

the bounds of PEL resistance. The feasible set of bus voltage is: 20.02 0.4926V  . As shown in Fig. 3(b), 

the objective function has a four-order non-convex form:   

2 2 2

2 2 2

100 50 1 1
( ) 2( 1) 200( ) .

3 3 6 12
J V V V V      

                          (11) 

  

(a) (b) 

Fig. 4: (a) The iteration of optimal policy. (b) The iteration of system cost. 

As shown in Fig. 4(a), discrete blue points represent the policy iteration in the learning process and the 

red curve represents the objective function of the network. As we can see, the policy reaches the suboptimal 

point (0.0785, 1.008) at first and jumps out of the suboptimal solution. Finally, the policy converges to the 

global optimum (0.4316, 0.0265). Fig. 4(b) shows the relationship between the objective function (system 

cost) and iteration steps. The objective function converges to the optimal value 0.0265 finally. 

5. Conclusion 
We model the relationship between the PEL resistance and the bus voltage in distribution networks. 

Then we formulate the DSM problem as a four-order non-convex optimization problem, which determines 

an optimal bus voltage policy to regulate the PEL and minimizes the losses and deviation cost of system. 

However, this optimization problem is non-convex and hard to find global optimum. Hence, we propose a 

DPG based algorithm to solve this problem. In the DPG framework, the actor is a policy neural network with 

parameter . The critic is estimated by polynomial regression from sampled action-value points. To increase 

the probability of convergence to the global optimum, we add noise to the policy when it interacts with the 

environment. The simulation results show that our algorithm can converge to the global optimum. 

As future works, we would like to use this algorithm to solve high-dimensional non-convex optimization 

problem in distribution networks, and discuss the computational complexity and scalability of this algorithm. 
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