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Abstract. The critical problem with the practical implementation of the high efficiency video coding 

(HEVC) encoder is the computational complexity. Complexity increases because of its novel techniques, 

such as quad-tree-based block partitioning. Thus, for years, researchers have used various methods and 

studied multiple algorithms to reduce the computing time of the HEVC encoder. However, a fast algorithm 

using the Parzen window has not yet been investigated. The Parzen window is a non-parametric method that 

estimates probability density using statistical samples and information. The proposed method is utilized to 

predetermine the size of a coding unit and statistical data for the Parzen window is updated periodically. 

Experimental results show that the proposed algorithm reduces encoding time by 51.96 % with a small 

Bjøntegaard-Delta bit-rate increase of 0.56 %.  
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1. Introduction 

The latest international video coding standard, high efficiency video coding (HEVC) [1], is used for 

various video content and applications. HEVC is particularly useful for compression of high resolution video 

sequences, such as ultra-high definition video content. This high-performance standard was developed by the 

joint collaborative team on video coding (JCT-VC), which adopted efficient technologies such as quad-tree-

based coding unit (CU) partitioning, 35 intra-prediction modes, sample adaptive offset, and advanced motion 

vector prediction. However, these techniques have increased the computational complexity of the HEVC 

encoder. 

The encoding time of the HEVC standard is a critical implementation problem. Therefore, multiple 

studies to generate algorithms to reduce encoding time have been conducted over several years [2]-[7]. 

Tseng and Lai [2] proposed an algorithm for intra coding of HEVC using the standard deviation and rate 

distortion (RD) costs. A CU size decision algorithm, based on the Bayesian decision rule, was introduced by 

Cho and Kim [3]. They employed the on-line update period to renew statistical data and calculate thresholds. 

In our previous work [4], we utilized quadratic discriminant analysis and the Bayesian decision rule to 

reduce encoding time. For split decision, CU depth levels from neighboring CUs and the variance difference 

were used. The thresholds and data are periodically updated by the online learning phase. The support vector 

machine (SVM) was employed for HEVC CU partitioning process in [5]. SVM is a supervised learning 

method employed for classification. The authors additionally used a wrapper method based on F-score to 

select features for their method. 

In this paper, we propose a fast CU size decision algorithm using the Parzen window (i.e., kernel density 

estimation) [6]. Many researchers presume that the distribution of features is Gaussian. However, this can 

cause degradation of coding efficiency owing to the difference between an actual and estimated distribution. 

Alternatively, we directly calculate the probability of features based on the Parzen window with the Gaussian 

kernel. Statistical samples for density estimation are updated to adapt video characteristics using an online 
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learning phase (OLP). In previous studies such as [3] and [4], the statistics are updated every T s. However, 

they could not reflect the characteristics of a video sequence when a scene change occurred between OLPs. 

We propose an adaptive OLP decision method to solve this problem using coding information. In our 

proposed algorithm, we defined an early CU size decision for the HEVC encoder as a binary classification 

problem. Each CU in a frame can be classified into a split class, 
s

 and unsplit class, 
u

 . When a CU is 

classified into 
s

 , all subsequent processes are skipped, and the block is divided into four. The CU 

partitioning process is finished when a CU is in 
u

 . 

The remainder of this paper is organized as follows. The proposed algorithm and its specification are 

described in Section 2. Experimental results and analysis are presented in Section 3. Finally, in Section 4, we 

conclude our study. 

2. Proposed Algorithm 

2.1. Feature Selection 

Optimal HEVC encoder CU partition results of the HEVC encoder are determined by comparing RD 

costs of each CU depth. RD costs play the most important role in the encoding process, not only because of 

the CU size, but also because of the prediction mode. Therefore, we select two features: the low complexity 

RD cost, lowJ   for the split decision and the full RD cost, fullJ  for the termination decision. 

In the HEVC encoder, the rough mode decision (RMD) for reducing processing time of the intra 

prediction is adopted by JCT-VC. lowJ  is used for the RMD, calculated as 

 pred mode ,lowJ SATD B     (1) 

where SATD denotes the absolute sum of the Hadamard-transformed residual signal. pred  is the Lagrangian 

multiplier, and modeB  represents the number of bits for a prediction mode. For terminating a partitioning 

process of a CU, we utilize the statistical information of full RD cost to find the optimal prediction mode and 

CU size. This is defined by 

 .full full fullJ D B     (2) 

Here, D is the sum of squared errors between the original and the reconstructed images. full  denotes the 

Lagrangian multiplier for the full RD cost calculation, and  fullB  is the number of bits needed to encode a CU.  

The statistical distribution of these features in OLP are periodically updated making the proposed 

algorithm adapt characteristics of video sequences and enhancing accuracy. 

2.2. Density Estimation Using the Parzen Window 

To classify a CU into its proper class, we exploit a nonparametric density estimation method, (i.e., the 

Parzen window). For the Parzen window method, various kernels are used to enhance its performance. 

Therefore, it is also called “kernel density estimation”. We utilize this method to calculate probability for 

classification. The estimated density at input, x is defined as 
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Fig. 1: Example of kernel density estimation. 

Here, N denotes the number of whole samples in both s  and u . The samples are collected during the 

learning phase. ( )
i

s n  represents an n-th sample of class i and hi is a window size calculated as 
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where maxi and mini denote the maximum and minimum values of features in  
s  or 

u . We set K to 10 

through our experiments. An example of the Parzen window using the square kernel is described in Fig. 1. h 

denotes the window size. An appropriate class for input sample, a, can be determined as class 2, because  

2
( )p a  is larger than 

1
( )p a . Additionally, we use the Gaussian kernel function [8] for better results, thus 

equation (3) is redefined as 
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Using Eq. (6), the probability is calculated by considering both the distance from the input feature and 

the number of samples in the window. If the window size is relatively large, a sample that is far from the 

input feature may be a factor that reduces the classification accuracy. Therefore, by using the Gaussian 

kernel to obtain the probability, we can improve the performance of our algorithm. 

2.3. Online Learning Phase 

The statistical data for classification should be periodically updated to prevent misclassifications. The 

learning phase is the key role of supervised learning algorithms. Therefore, in our proposed algorithm, the 

OLP is determined adaptively based on the statistics  
low

J  and the best intra mode resulting from a rough 

mode decision (
rmd

M ). Additionally, 
low

J  and  
rmd

M  are derived from coding tree units (CTUs) which are 

64×64 CUs since the data of other CUs are affected by our fast CU size decision. Our OLP decision 

algorithm is described in Fig. 2. First, we calculate a difference in the ratio of RD cost ( ) which is defined as 

follows, 
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where, A denotes a CTU address. 
,

L

low A
J  and  

,

N

low A
J  are RD costs by RMD of OLP and a current frame (non-

OLP), respectively. We define a current CTU as a different CTU when 
J

D  is larger than 0.8 which means 

80 %. If  
J

D  is smaller than 0.8 and larger than 0.4, we consider the additional information (
rmd

M ). The 

proposed method checks similarity based on the directionality of the intra prediction mode. When an RMD 

intra mode of a current CTU ( N

rmd
M ) and a CTU from OLP ( L

rmd
M ) are in DC or Planar mode, or the difference 

between both modes is less than or equal to 3, we consider that a current CTU is similar to that of an OLP. 

Then, we can obtain a number of different CTUs (
D

N ) and similar CTUs (
S

N ). When the HEVC encoding 

process of a frame in non-OLP is finished, the proposed algorithm calculates the ratio of different CUs in a 

current frame. If the ratio is larger than a threshold (TOLP), our method decides that the next frame is OLP.  

 

Fig. 2: A flowchart of OLP decision. 
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When a frame is in OLP, RD costs ( fullJ , lowJ ) and the number of CU of each class (
s ,

u ) are stored 

in memory for classification. Additionally, the window size, hi in Eq. 5, is calculated as the encoding process 

of the frame is finished. 

2.4. Proposed CU Decision Algorithm 

The proposed algorithm of a frame in non-OLP is described in Fig. 3. The SCU denotes the smallest CU 

(8×8 CU). Additional processes by the proposed algorithm are seen in the greyed boxes. α is a user 

parameter that is related to the accuracy of the proposed method. CU address increases per a zigzag scan 

order. A current CU can be classified into s  or u , based on following equation. 
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(a) 

 
(b) 

Fig. 4: CU partition results of KristenAndSara test sequence by (a) HM Original and (b) α=0.8. 

Here, ( )
i

p x  denotes estimated probability, from Eq. (6). For a split decision, i and x are s  and lowJ , 

respectively. Additionally, i and x are  u  and  fullJ , respectively, when the proposed algorithm decides if a 

CU is terminated. Following the RMD of intra prediction, lowJ  of a CU becomes the input of the density 

estimation, and the proposed algorithm decides whether the CU is pre-partitioned. When a current CU is 

classified into s , it means that R( s , lowJ ) is larger than α, and the depth level of the CU is increased. If 

the current CU is not split early, the full RD cost is calculated and the same method is also applied to early 

 
Fig. 3: Block diagram of the proposed algorithm for non-OLP frames. 
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termination decision. When a partitioning of the current CU is terminated early, the CU address increases 

based on a zigzag scan order. 

3. Experimental Results 

To evaluate the performance of the proposed algorithm, we implemented it on an HEVC test model (HM 

16.15) [9]. The test sequences and all intra configuration specified by JCT-VC [10] are used for simulation. 

The user parameter α varies from 0.7 to 0.8. K and TOLP are set to 10 and 0.2, respectively, based on 

experimental results. The quantization parameters are 22, 27, 32, and 37. The proposed algorithm is 

compared to recent algorithms in terms of the Bjøntegaard-Delta bit-rate (BR), Bjøntegaard-Delta peak 

signal-to-noise ratio (PSNR) (BP) [11], and time savings (△T), calculated as, 

 
HM16.15 Proposed

HM16.15

T T
ΔT 100(%)

T


    (9) 

where  
HM16.15

T  and 
Proposed

T   represent the encoding time of HM 16.15 and the proposed algorithm, respectively.  

The CU partitioning results of HM16.15 and the proposed algorithm when α is 0.8 are described in Fig. 3.  

CUs in the low frequency area (i. e., background) are relatively larger than CUs on the edges and in the 

complex area. The proposed algorithm classifies CUs accurately, because the CU partitioning structure of the 

proposed algorithm is similar to that of HM 16.15. 

Experimental results of the effects of accuracy, α, are listed in Table I. As accuracy increases, coding 

efficiency improves, in terms of the BR (%) and BP (dB). The more accurately the proposed classification is 

applied, the longer the encoding time takes. The proposed algorithm demonstrates the best performance for 

Class A, because the resolution of Class A is relatively large, having statistical data. Class D possesses a 

relatively small resolution. Therefore, inaccurate classification can occur more than other sequences. 

Comparison results of related algorithms are shown in Table II, in terms of BR (%) and △T (%). The 

proposed algorithm’s BR and encoding time are better than [2] (CU decision only). The proposed algorithm 

(α = 0.7) saves more than 1.73 % of encoding time compared to [3] (α = 0.1) with a better coding efficiency. 

Compared to our previous work [4], the proposed algorithm (α = 0.7) exhibits a lower coding loss and has a 

faster encoding time. The proposed algorithm also displays superior coding performance compared with [5], 

but the time saved is minor. 

Table 1: Overall performance of the proposed algorithm for various   values 

Classes Test sequences 
0.7   0.75   0.8   

BR  BP △T  BR  BP △T  BR  BP △T  

Class A 

(2560x1600) 

 

NebutaFestival 0.36  -0.03  70.32 0.27  -0.02  66.60 0.14  -0.01  58.45 

PeopleOnStreet 0.45  -0.03  46.15 0.37  -0.02  40.92 0.32  -0.02  42.02 

SteamLocomotiveTrain 0.61  -0.02  59.67 0.39  -0.01  50.79 0.22  -0.01  48.87 

Traffic 0.29  -0.02  46.55 0.21  -0.01  43.72 0.13  -0.01  41.68 

 
Class B 

(1920x1080) 

 

BasketballDrive 0.60  -0.02  57.93 0.42  -0.01  53.32 0.23  -0.01  49.14 

BQTerrace 0.53  -0.03  57.72 0.42  -0.02  53.14 0.36  -0.02  54.54 

Cactus 0.34  -0.01  46.79 0.30  -0.01  44.49 0.24  -0.01  43.04 

Kimono 1.18  -0.04  62.62 0.96  -0.03  58.25 0.35  -0.01  51.80 

ParkScene 0.18  -0.01  40.75 0.17  -0.01  36.13 0.08  0.00  37.20 

 

Class C 

(WVGA) 

BasketballDrill 0.59  -0.03  48.64 0.51  -0.02  42.60 0.47  -0.02  43.63 

BQMall 0.57  -0.03  48.19 0.48  -0.03  42.92 0.47  -0.03  43.55 

PartyScene 0.36  -0.03  46.64 0.31  -0.02  41.32 0.28  -0.02  43.28 

RaceHorses 0.37  -0.02  43.90 0.23  -0.01  36.21 0.20  -0.01  37.25 

 

Class D 

(WQVGA) 
 

BasketballPass 0.71  -0.04  53.80 0.57  -0.04  48.49 0.47  -0.03  48.12 

BlowingBubbles 0.28  -0.02  44.00 0.18  -0.01  39.96 0.16  -0.01  39.27 

BQ square 0.64  -0.05  45.53 0.60  -0.05  44.35 0.54  -0.04  46.04 

RaceHorses 0.68  -0.04  41.43 0.58  -0.04  38.74 0.42  -0.03  36.86 

Class E 

(720p) 

 
 

FourPeople 0.51  -0.03  53.33 0.32  -0.02  49.41 0.27  -0.02  49.14 

Johnny 1.05  -0.04  62.63 0.90  -0.04  59.46 0.85  -0.04  58.16 

KristenAndSara 0.86  -0.04  62.56 0.77  -0.04  59.13 0.65  -0.03  59.76 

Average 0.56  -0.03  51.96 0.45  -0.02  47.50 0.34  -0.02  46.59 
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Table 2: Comparison to state-of-the-art algorithms 

Algorithms BR △T 

Proposed ( 0.7  ) 0.56 51.96 

Proposed ( 0.75  ) 0.45 47.50 

Proposed ( 0.8  ) 0.34 46.59 

[2] (CU decision) 0.50 40.00 

[3] ( 0.1  ) 0.60 50.20 

[4] (γ = -0.5, 
OLPS = 1) 0.58 50.35 

[5] 1.17 52.99 

 

4. Conclusion 

In this study, an early split and termination decision for CU of the HEVC encoder were proposed, based 

on the Parzen window and a learning system. We utilized the Parzen window to determine the proper class of 

CUs and selected the Gaussian kernel to improve performance. To adapt the characteristics of video 

sequences, we exploited the OLP to update the statistical information needed for the proposed algorithm. 

Simulation results demonstrated that our algorithm reduces encoding time by 53.77 % with negligible coding 

efficiency loss (0.61 %) when α is 0.7. Compared to other algorithms, the proposed method shows superior 

performance in terms of time savings and the coding efficiency. 
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