
Concurrent Error Detection Scheme for Montgomery Multiplication

Over GF(2
m

)

Kee-Won Kim
1


, Hyun-Ho Lee

2
, and Seung-Hoon Kim

1

1
 Department of Applied Computer Engineering, Dankook University, Yongin, Republic of Korea

2
 Department of Computer Science, Dankook University, Yongin, Republic of Korea

Abstract. Finite fields over GF(2m) have great interest for their applications like cryptography, where it is

important to detect an error. Multiplication is one of the most crucial operations and the concurrent error

detection scheme for multiplication over finite fields is very useful to increase the reliability in such

application. In this paper, we propose a concurrent error detection scheme to be efficiently employed for the

Montgomery multiplication over GF(2m). Our scheme uses two Montgomery factors for deriving an efficient

concurrent error detection. We expect that the multiplier with concurrent error detection using our scheme

can save about 50% time complexity as compared to the existing structures. In future research, we will

implement the detailed architecture to compute Montgomery multiplications with concurrent error detection.

Keywords: cryptography, Montgomery multiplication, finite field arithmetic, fault-tolerant computing,

concurrent error detection

1. Introduction

Finite fields 𝐺𝐹(2𝑚) have several applications in such areas of communications as error-correcting

codes [1] and cryptography [2]. Among the basic arithmetic operations over 𝐺𝐹(2𝑚), multiplication is the

most important, complex, and time consuming.

Since the reliability of computation over 𝐺𝐹(2𝑚) against fault-based cryptanalysis [3,4] is an important

issue, an efficient multiplier with a concurrent error detection capability is required. Various the finite field

multipliers with or without concurrent error detection capability have received the most attention in the

literature [5-9].

Chiou et al. [6] proposed the semi-systolic array implementation of the Montgomery multiplication used

a time-redundancy-based error detection approach. Their approach has used recomputing with shifted

operands (RESO) method and alternate data retry. Also, Hariri and Reyhani-Masoleh [7] proposed the

improved time-redundancy-based approach for the semi-systolic array implementation, as well as a single-bit

parity-based technique for concurrent error detection in the bit-serial Montgomery multiplication. Hariri and

Reyhani-Masoleh [8] proposed the concurrent error detection scheme for three different Montgomery

multipliers, namely the bit-serial, digit-serial, and bit-parallel multipliers and implemented for each of them.

Recently, Kim and Jeon [9] proposed the efficient Montgomery multiplier over 𝐺𝐹(2𝑚) with about half

latency as compared to related multipliers.

In this paper, we propose a concurrent error detection scheme using the time redundancy. Our concurrent

error detection scheme uses two Montgomery factors for deriving an efficient architecture and can be

efficiently adopted to Kim-Jeon’s multiplier [9]. Since Kim-Jeon’s multiplier has half latency as compared to

related multipliers, we expect that the multiplier with concurrent error detection using our scheme can save

about 50% time complexity as compared to the existing structures.

 31-8005-3689; fax: +82-31-8021-7422.

 E-mail address: nirkim@dankook.ac.kr.

Proceedings of 2018 the 8th International Workshop on Computer Science and Engineering

(WCSE 2018)

Bangkok, 28-30 June, 2018, pp. 5 26 -5 30

526

ISBN 978-981-11-7861-0

Corresponding author. Tel.: +82-

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本
 doi: 10.18178/wcse.2018.06.090

admin
打字机文本

admin
打字机文本

admin
打字机文本

The rest of the paper is organized as follows. In Section 2, we provide a brief background which includes

the Montgomery multiplication over GF(2m) and RESO. In Section 3, we propose a concurrent error

detection scheme for the Montgomery multiplier over 𝐺𝐹(2𝑚). Finally, we conclude the paper in Section 4.

2. Preliminaries

This section briefly reviews the Montgomery multiplication over 𝐺𝐹(2𝑚) and RESO.

2.1. Montgomery multiplier over finite fields

𝐺𝐹(2𝑚) is a kind of finite field that contains 2m different elements. This finite field is an extension of

𝐺𝐹(2) and any 𝛼 ∈ 𝐺𝐹(2𝑚) can be represented as a polynomial of degree 𝑚 − 1, such as 𝛼 = 𝛼0 + 𝛼1𝑥 +

𝛼2𝑥2 + ⋯ + 𝛼𝑚−2𝑥𝑚−2 + 𝛼𝑚−1𝑥𝑚−1 , where 𝛼𝑗 ∈ {0,1} , for 0 ≤ 𝑗 ≤ 𝑚 − 1 . Let 𝑥 be a root of the

polynomial, then the irreducible polynomial 𝑃 is represented as 𝑃 = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥2 + ⋯ + 𝑝𝑚−2𝑥𝑚−2 +

𝑝𝑚−1𝑥𝑚−1 + 𝑥𝑚, where 𝑝𝑗 ∈ {0,1}, for 0 ≤ 𝑗 ≤ 𝑚 − 1.

The Montgomery multiplication algorithm is an efficient method for computing modular multiplications

and squarings required for exponentiation [10]. A binary Montgomery multiplication algorithm over the bit-

level is introduced by Koc et al. [5].

Let α and β be two elements of 𝐺𝐹(2𝑚), then we define 𝛿 = 𝛼 ∙ 𝛽 mod 𝑃 . Also, let 𝐴 and 𝐵 be two

Montgomery residues, then they are defined as

𝐴 = 𝛼 ∙ 𝑟 mod 𝑃 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑚−2𝑥𝑚−2 + 𝑎𝑚−1𝑥𝑚−1, (1)

𝐵 = 𝛽 ∙ 𝑟 mod 𝑃 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + ⋯ + 𝑏𝑚−2𝑥𝑚−2 + 𝑏𝑚−1𝑥𝑚−1, (2)

where a Montgomery factor r and an irreducible polynomial 𝑃 are relatively prime, and gcd(𝑟, 𝑃) = 1. Then,

the Montgomery multiplication algorithm [9] over 𝐺𝐹(2𝑚) can be formulated as

𝐶 = 𝐴 ∙ 𝐵 ∙ 𝑟−1 mod 𝑃. (3)

Then, (3) can be expressed as the following by the definition of the Montgomery residue as shown in (1)

and (2)

𝐶 = (𝛼 ∙ 𝑟) ∙ (𝛽 ∙ 𝑟) ∙ 𝑟−1 mod 𝑃 = 𝛿 ∙ 𝑟 mod 𝑃. (4)

For deriving an efficient parallel architecture, Kim and Jeon [9] choose 𝑟 = 𝑥⌊𝑚/2⌋ as the Montgomery

factor. Then, the Montgomery multiplication over 𝐺𝐹(2𝑚) can be formulated as

𝐶 = 𝐴 ∙ 𝐵 ∙ 𝑟−1 mod 𝑃 = 𝐴 ∙ 𝐵 ∙ 𝑥−⌊𝑚/2⌋ mod 𝑃.

(5)

𝐶 is represented by substituting (2) in (5) as follows:

𝐶 = (∑ 𝑏𝑗𝐴𝑥𝑗

𝑚−1

𝑗=0

) ∙ 𝑥−⌊𝑚/2⌋ mod 𝑃

= ∑ 𝑏𝑗𝐴𝑥𝑗−⌊𝑚/2⌋mod𝑃

⌊𝑚/2⌋−1

𝑗=0

+ ∑ 𝑏𝑗𝐴𝑥𝑗−⌊𝑚/2⌋mod 𝑃

𝑚−1

𝑗=⌊𝑚/2⌋

≡ 𝑆 + 𝑇,

(6)

where 𝑆 = ∑ 𝑏𝑗𝐴𝑥𝑗−⌊𝑚/2⌋mod𝑃
⌊𝑚/2⌋−1
𝑗=0 and 𝑇 = ∑ 𝑏𝑗𝐴𝑥𝑗−⌊𝑚/2⌋mod 𝑃𝑚−1

𝑗=⌊𝑚/2⌋ .

527

𝑆 and 𝑇 can be simultaneously executed because there are no data dependency between them. Using this

property, they proposed the polynomial basis multiplication architecture using Montgomery multiplication

algorithm over GF(2m) with about half time complexity compared to the typical related architectures.

2.2. Recomputing with shifted operand (RESO)

Patel and Fung [11, 12] used the RESO method for providing concurrent error detection capability on a

traditional arithmetic logic unit with multiply/divide array. Their method is based on time redundancy, using

the existing hardware to shift and replicate operations for developing the concurrent error detection

capability of the circuits. In the RESO method, every operation is executed twice, once for the basic

operation and once for the shifted input operation. The results from both operations are compared to detect

errors. A mismatch indicates the presence of errors.

3. The Concurrent Error Detection Scheme for Montgomery Multiplier

In this section, we propose a new concurrent error detection scheme based on the RESO method using

the Montgomery multiplication algorithm in [9]. For convenience of deriving the relevant equations, we

assume that 𝑚 is even. Let 𝑘 = ⌊𝑚/2⌋ . We use 𝑟 = 𝑥𝑘 and 𝑟′ = 𝑥𝑘+1 as two Montgomery factors for

deriving an efficient concurrent error detection scheme. 𝛼 and 𝛽 are two elements in 𝐺𝐹(2𝑚) generated by 𝑃.

𝐴 and 𝐵 are given by multiplying 𝛼 and 𝛽 with 𝑟 = 𝑥𝑘, respectively. They are represented as follows:

𝐴 = 𝛼 ∙ 𝑟 mod 𝑃 = 𝛼 ∙ 𝑥𝑘 mod 𝑃, 𝐵 = 𝛽 ∙ 𝑟 mod 𝑝 = 𝛽 ∙ 𝑥𝑘 mod 𝑃. (7)

Similarly, 𝐴′ and 𝐵′ are given by multiplying 𝛼 and 𝛽 with 𝑟′ = 𝑥𝑘+1, respectively. They are represented

as follows:

𝐴′ = 𝛼 ∙ 𝑟′ mod 𝑃 = 𝛼 ∙ 𝑥𝑘+1 mod 𝑃, 𝐵′ = 𝛽 ∙ 𝑟′ mod 𝑝 = 𝛽 ∙ 𝑥𝑘+1 mod 𝑃. (8)

We can perform two Montgomery multiplications as

𝐶 = 𝐴 ∙ 𝐵 ∙ 𝑟−1 mod 𝑃 = 𝐴 ∙ 𝐵 ∙ 𝑥−𝑘 mod 𝑃, (9)

𝐶′ = 𝐴′ ∙ 𝐵′ ∙ 𝑟′−1
 mod 𝑃 = 𝐴′ ∙ 𝐵′ ∙ 𝑥−(𝑘+1) mod 𝑃. (10)

We can rewrite (9) and (10) as

𝐶 = (∑ 𝑏𝑗𝐴𝑥𝑗

𝑚−1

𝑗=0

) ∙ 𝑥−𝑘 mod 𝑃

= ∑ 𝑏𝑗𝐴𝑥𝑗−𝑘mod𝑃

𝑘−1

𝑗=0

+ ∑ 𝑏𝑗𝐴𝑥𝑗−𝑘mod 𝑃 ≡ 𝑆 + 𝑇

𝑚−1

𝑗=𝑘

(11)

𝐶′ = (∑ 𝑏′
𝑗𝐴′𝑥𝑗

𝑚−1

𝑗=0

) ∙ 𝑥−(𝑘+1) mod 𝑃

= ∑ 𝑏′𝑗𝐴′𝑥𝑗−(𝑘+1)mod𝑃

𝑘

𝑗=0

+ ∑ 𝑏′𝑗𝐴′𝑥𝑗−(𝑘+1)mod 𝑃 ≡ 𝑆′ + 𝑇′

𝑚−1

𝑗=𝑘+1

(12)

where 𝑆 = ∑ 𝑏𝑗𝐴𝑥𝑗−𝑘mod𝑃𝑘−1
𝑗=0 , 𝑇 = ∑ 𝑏𝑗𝐴𝑥𝑗−𝑘mod 𝑃𝑚−1

𝑗=𝑘 , 𝑆′ = ∑ 𝑏′𝑗𝐴′𝑥𝑗−(𝑘+1)mod𝑃𝑘
𝑗=0 , and 𝑇′ =

∑ 𝑏′𝑗𝐴′𝑥𝑗−(𝑘+1)mod 𝑃𝑚−1
𝑗=𝑘+1 .

528

Fig. 1: Proposed concurrent error detection for the Montgomery multiplication.

We can modify the Montgomery multiplier in [9] for computing two consecutive Montgomery

multiplications with two different Montgomery factors. The flowchart of the proposed error detection

scheme is depicted in Fig. 1. The RESO method is employed for concurrent error detection of the fault

existing in the multiplier array. The fundamental operations of the proposed error detection are shown as the

following steps:

1) The first step is executed in normal multiplication mode using the inputs 𝐴 and 𝐵 based Montgomery

factor 𝑟 = 𝑥𝑘. Both inputs 𝐴 and 𝐵 are applied to the multiplier and the result 𝐶 is converted by the function

unit ×x circuit to 𝐶′ and then such a 𝐶′ is stored in latches.

2) The second step is performed in the error-checking operation mode applying with the alternate inputs

𝐴′ and 𝐵′ based Montgomery factor 𝑟′ = 𝑥𝑘+1. Both 𝐴′ and 𝐵′ are input to the Montgomery multiplier array

and the result 𝐶′ is compared to the previously stored result 𝐶′ in latches.

4. Conclusion

In this paper, we have presented the method of the concurrent error detection based on Kim-Jeon’s

Montgomery multiplier. Our scheme uses two Montgomery factors for deriving an efficient concurrent error

detection. We expect that a modified Montgomery multiplier can perform Montgomery multiplications with

two different factors. Also, we expect that the multiplier with concurrent error detection using our scheme

can save about 50% time complexity as compared to the existing structures. We will implement the

architecture to be able to compute Montgomery multiplications with two different factors in future research.

5. Acknowledgments

This research was supported by Basic Science Research Program through the National Research

Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01059739).

529

6. References

[1] R.E. Blahut. Theory and Practice of Error Control Codes. Addison-Wesley, 1983.

[2] A.J. Menezes, P.C. Van Oorschot, S.A. Vanstone. Handbook of Applied Cryptography. CRC Press, 1996.

[3] E. Biham, A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems. In: Proc. Crypto, 1997, (LNCS,

1294), pp. 513-525.

[4] D. Boneh, R. Demillo, R. Lipton. On the Importance of Checking Cryptographic Protocols for Faults. In: Proc.

Advances in cryptology - EUROCRYPT’97, 1997, pp. 37-51

[5] C. Koc, T. Acar. Montgomery Multiplication in GF(2
k
). Des. Codes Cryptogr. 1998, 14: 57-69.

[6] C.W. Chiou, C.Y. Lee, A.W. Deng, J.M. Lin. Concurrent Error Detection in Montgomery Multiplication over

GF(2
m
). IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. 2006,

E89-A(2): 566-574.

[7] A. Hariri, A. Reyhani-Masoleh. Fault Detection Structures for the Montgomery Multiplication over Binary

Extension Fields. In: Proc. Workshop Fault Diagnosis and Tolerance in Cryptography (FDTC). 2007, pp. 37-46.

[8] A. Hariri, A. Reyhani-Masoleh. Concurrent Error Detection in Montgomery Multiplication over Binary Extension

Fields. IEEE Transactions on Computers. 2011, 60 (9): 1341-1353.

[9] K.W. Kim, J.C. Jeon. Polynomial Basis Multiplier Using Cellular Systolic Architecture. IETE Journal of Research.

2014, 60(2): 194-199.

[10] P. Montgomery. Modular Multiplication without Trial Division. Math. Comput. 1985, 44: 519-521.

[11] J.H. Patel, L.Y. Fung. Concurrent Error Detection in ALU’s by Recomputing with Shifted Operands. IEEE Trans.

Comput. 1982, C-31: 589-595.

[12] J.H. Patel, L.Y. Fung. Concurrent Error Detection in Multiply and Divide Arrays. IEEE Trans. Comput. 1983, C-

530

32: 417-422.

