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Abstract. Honeycomb mesh was first put forward by Stojmenovic in 1997. Honeycomb mesh with smaller 

diameter and degrees of nodes (vertices), is superior to other networks, so has a great application prospect. 

The Wiener number is a topological index defined as the sum of distance of all pairs of vertices in the graph, 

which was introduced in 1947 by Harold Wiener as the path number, it is one of the most widely studied 

topological indices. In addition, the Wiener index is also related to a parameter of the computer network, the 

average distance. The convex honeycomb mesh can be depicted by a piece of an Archimedean tiling (6.6.6) 

that is a partial cube. Inspired by this fact, the analytical expressions for Wiener numbers of three convex 

honeycomb meshes and their Wiener entropies are obtained. Furthermore, their asymptotic behaviors and 

average distances are also discussed. 
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1. Introduction

Honeycomb mesh was first put forward by Stojmenovic in 1997 [1]. Honeycomb mesh with smaller

diameter and degrees of nodes (vertices), is superior to other networks, so has a great application prospect. 

Honeycomb mesh topological structure can be regarded as bipartite graph. The Wiener number (often also 

called the Wiener index) W is a topological index of G defined as the sum of distance of all pairs of vertices 

in the graph. This index was introduced in 1947 by Harold Wiener as the path number [8], it is one of the 

most widely studied topological indices. The Wiener index has also been widely used in organic and polymer 

chemistry, crystals, and drug design. A large number of literatures have been published on the calculation of 

Wiener indicators for various compound molecular maps. At the same time, the development of topological 

indicators based on distances in graphs has also been stimulated, such as the hyper-Wiener index, the Schultz 

index, etc. Wiener indicators in mathematics research and application can refer to [6,10]. In addition, the 

Wiener index is also related to a parameter of the computer network, the average distance. We note that the 

Wiener number and average distance are based on the node-distance topological index of the network.  

For a connected graph G, the Wiener number of G is denoted by W(G), and the Wiener entropy is 

defined by lim (log ( ) )n W G n
, and the average distance of G is defined by 2( ) W(G) nW G C , here n is the number of

vertices of G. A plane tiling  1 2T , ,T T  is a countable family of closed polygons which covers the plane 

without gaps and inner-point-overlaps, where 
1 2, ,T T  are known as tiles of T [2]. We shall restrict attention to 

tilings that are edge-to-edge [3, 4], it means that the mutual relation of any two tiles in T must be just one of 

the following three: 

1. they are disjoint (have no point in common);

2. they have precisely one common point which is a vertex of each of the polygons;

3. they share a segment that is an edge of each of the two polygons.

 Corresponding author. Tel.: +09716307622; fax: +09716307622.

E-mail address: haizhenr@126.com.

330

ISBN 978-981-11-7861-0
Proceedings of 2018 the 8th International Workshop on Computer Science and Engineering  

(WCSE 2018) 

Bangkok, 28-30 June, 2018, pp. 330-334 
            doi: 10.18178/wcse.2018.06.059 



Hence a point of the plane that is a vertex of one of the polygons in an edge-to-edge tiling is also a vertex 

of every other polygon to which it belongs, such a point is called a vertex of the tiling T. Similarly, each 

edge of one of the polygons is an edge of precisely one other polygon and we call it an edge of the tiling T. 
Conveniently, the edges and vertices of an edge-to-edge tiling can be seen as in a graph. 

Besides, we denote the type of a vertex by a, , ,b c  if it is surrounded in cyclic order by regular polygons 

of orders a, , ,b c . If the tilings with only a single type of vertex a, , ,b c , we shall denote the tiling by a, , ,b c（ ）. 

Our present paper is stimulated by [3] and [4], in their studies the convex honeycomb mesh is depicted 

by a piece of (6.6.6) tiling(see Fig. 1(1)). We first compute the Wiener numbers of three connected 

subgraphs of (6.6.6)-tiling for three convex honeycomb meshes, and their exact analytical expressions are 

obtained, then their Wiener entropies and average distances are also considered. Our results show that if 

convex honeycomb meshes have different boundary conditions, then their average distances are also 

different, but their Wiener entropies is not affected. 

 
Fig. 1: (1)some connected subgraphs of tiling (6.6.6), (2) (3) elementary cut segments. 

2. Preliminary 

In this section, we will introduce some concepts and list some lemmas that will be used in sequel. 

Definition 2.1([5]) Let G be a connected graph. The vertex set and edge set of G are denoted by V(G) 

and E(G) respectively, and the number of vertices of G is denoted by n(G), then the Wiener number of G is 

denoted as 
, ( )

W(G) ( , | )
u v V G

d u v G


  where d(u,v|G) denotes the distance between u and v, and the summation is 

over all pairs of vertices of G. 

Definition 2.2([9]) Let G be a subgraph of one of tilings (4.4.4.4), (6.6.6), (4.8.8) and (4.6.12). Assume 

that G is a connected plane graph with no cut vertices, in which every interior region is bounded by a regular 

polygon of side length 1. An elementary cut segment C of G is a straight line segment: it is orthogonal to 

some edges of G such that touches the perimeter of G at the two points only, and that deleting all the parallel 

edges which are orthogonal to C and intersected by C will lead to exactly two connected components. (see 

Fig. 1(2)). 

For example, there are some elementary cut segments of some connected subgraphs of (4.4.4.4) and 

(6.6.6) tilings in Fig.1(3). It is also easy to find that for any edge uv of G, uv must be orthogonal to an 

elementary cut segment C. We use Cuv to denote the family of edges which are orthogonal to C and 

intersected by C. We call Cuv  the elementary cut associated with uv. 

Lemma 2.1 ([8]) Only four tilings in Archimedean tilings, which are (4.4.4.4), (6.6.6), (4.8.8)and 

(4.6.12) tilings, all their connected subgraphs are partial cubes. 

Definition 2.3([9]) For a partial cube G, let 
1 2C , , , kC C be the elementary cut segments of G, and 0G

iC , 1G
iC  

are two connected components of \ ( 1,2, , )iG C i k , define a label for G, l:V(G) {0,1}k , for u ( )V G , then the i th 

position of  1 2l( ) ( ( ), ( ), , ( ))ku l u l u l u  is:  
0

i 1

0,
( )

1,

i

i

C

C

if u G
l u

if u G

 
 


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Lemma 2.2 ([7]) Let G be a partial cube on n vertices and
1 2C , , , kC C be the elementary cut segments of 

G. Then 0 1W(G) ( ) ( )
i iCi

C Cn G n G  , where 0( )
iCn G  and 1( )

iCn G  are the number of vertices in the two connected 

components of \ ( 1,2, , )iG C i k  , and the summation is over all elementary cut segments of G. 

3. The Wiener number of convex honeycomb meshes 

3.1. The first class of convex honeycomb meshes 

See Fig.2(1), there are some connected subgraphs of (6.6.6) tiling. We can use the method mentioned in 

Lemma 2.2 to compute their Wiener numbers. There are three groups of elementary cut segments. One is the 

vertical cut segments labelled by 
iC ( 1,2, ,4 3)i n 

 
from left to right in Fig.2(1). Then we can obtain other two 

groups of oblique elementary cut segments by rotating 
iC ( 1,2, ,4 3)i n   by 060 respectively. It is easy to see 

that their contributions to the Wiener number of H(n) are the same as the contribution of cuts 
iC ( 1,2, ,4 3)i n  . 

Besides, the cuts 
1C  and

4 3C n , 
2C and 

4 4C n , , 
2 2C n and

2C n made the same contribution to the Wiener number 

of  H(n). 

 
Fig. 2: three convex honeycomb meshes. 

First, we calculate the number of vertices of  H(n). 
( ( 1)) ( ( )) 36 ,

( ( )) ( ( 1)) 36( 1),

( ( 1)) ( ( 2)) 36( 2),

( (2)) ( (1)) 36.

n H n n H n n
n H n n H n n
n H n n H n n

n H n H

  

   

    

 

 

Add up all the above expressions, we get 
2( ( 1)) ( (1)) 36(1 2 3 ) 18 18n H n n H n n n         .  

Therefore, 2( ( )) 18 18 6n H n n n   . 

 For every vertical cut iC ( 1,2, , )i n , we get 0 2( ( ) ) 2(1 4 3 2) 3
iCn H n i i i       . Then, for any vertical cuts  

iC ( 1, 2, ,2 2)i n n n    , we have 0 2 2( ( ) ) 3 [2(3 2) 1] 3 (6 3) ,( )
iCn H n n j n n n j j i n         .Finally, for elementary cut 

segment 2 1C n , we have 
2 1 2 1

0 1 2( ( ) ) ( ( ) ) 9 9 3
n nC Cn H n n H n n n
 

    . Denote the contribution of iC ( 1,2, ,4 3)i n   to the 

Wiener number of  H(n) by 1W . Then we have  
20 1 2 2 2 2 2 2 2 2

1 1 1
( ( ) ) ( ( ) ) 2 3 (18 18 6 3 ) 2 [3 (6 3) ][(18 18 6) 3 (6 3) ) (9 9 3) ]



 
                 i ii

n n
C CC i j

W n H n n H n i n n i n n j n n n n j n n . 

Thus, 
5 4 3 2

1 825 5 426 456 258 378 5 9W n n n n n      . Therefore we have the Wiener number of H(n) as 
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5 4 3 2

1( ( )) 3 2556 5 1278 1368 774 1134 5 27W H n W n n n n n       . 

Conveniently, we can get its Wiener entropy 
5 4 3 2 2lim log ( ( )) ( ( )) lim log(2556 5 1278 1368 774 1134 5 27) (18 18 6) 0n nW H n n H n n n n n n n n          . 

And its average distance 2

5 4 3 2 2

18 18 6
( ( )) (2556 5 1278 1368 774 1134 5 27)

 
     

n n
W H n n n n n n C .When n gets large enough, 

( ( ))W H n approximates to 142 / 45n .   

3.2. The second class of convex honeycomb meshes 

Now, we consider another kind of connected subgraph of tiling (6.6.6), which is the second class of 

convex honeycomb meshes (see Fig.2(2)). We use H'(n) to denote it. The method of calculation of Wiener 

number of H'(n) is similar to that for H(n). For H'(n) there are three groups of elementary cut segments. As 

shown in Fig.2(2), one is the vertical cuts, we denote them as iC ( 1,2, ,2 1)i n  , label it from left to right. 

Then we can get other two groups of oblique elementary cut segments 'Ci  and ''Ci  by rotating 

iC ( 1,2, ,2 1)i n  by 60 respectively.
 
It is easy to see that their contributions to the Wiener number of 

'( )H n are the same as Ci 's. Besides, 
1C  and 

2 1C n , 
2C  and 

2 2C n , , 
1Cn  and 

1Cn  made the same contribution to 

the Wiener number of '( )H n . First, it is easy to get the number of vertices of '( )H n  by observation, 
' 2( ( )) 6[1 3 5 (2 1)] 6n H n n n       . Then, for any vertical cuts  Ci , ' 0 2( ( ) ) 2

iCn H n ni i  .  

Denote the iC ( 1,2, ,2 1)i n   contribution to the Wiener number of '( )H n  by 
1W . Then we have: 

' 0 ' 1 5 3

1 ( ( ) ) ( ( ) ) 164 15 2 15
i ii

C CC
W n H n n H n n n n    . Therefore we have the Wiener number of '( )H n  as  

' 5 3

1( ( )) 3 164 5 6 5W H n W n n n    . 

Conveniently, we can get its Wiener entropy 
' ' 5 3 2lim log ( ( )) ( ( )) lim log(164 5 6 5) 6 0n nW H n n H n n n n n     . 

And its average distance 2

' 5 3 2

6
( ( )) (164 5 6 5)

n
W H n n n n C   . When n gets large enough, 

'( ( ))W H n  approximates 

to 82 / 45n . 

3.3.  The third class of convex honeycomb meshes 

See Fig.2(3), where the third class of convex honeycomb meshes is illustrated. We have given two group 

of elementary cut segments of S(n). There are three groups of elementary cut segments. One is the vertical 

cut segments i( 1,2, ,4 1)A i n   labelled from left to right. There are two groups of oblique elementary cut 

segments, one is the group of cut segments 
iA  and another is the group of cut segments ( 1,2, ,2 1)jB j n  , 

( 1,2,3,4)sC s  , ( 1,2, ,2 3)lD l n   and E. We can obtain another group of oblique elementary cut segments by 

rotating jB , sC , lD  and E by 60 . The number of vertices of S(n) is 2 2( ( )) 2(6 19 7) 12 38 14n S n n n n n      .  

Then for every vertical cuts  i( 1,2, ,2 )A i n , we have 0 2( ( ) ) 7 11 14 (3 5) 1 13 2 3 2
iAn S n i i i          . Then, for 

vertical cuts 
2 1nA 

, we have 
2 1

0 2( ( ) ) 6 19 7
nAn S n n n


   . Denote the i( 1,2, ,4 1)A i n   contribution to the Wiener 

number of   S(n) by 1W . Then we have  
0 1 2 3 4 5

1 ( ( ) ) ( ( ) ) 49 6032 15 1129 3896 3 532 336 5
i ii

A AA
W n S n n S n n n n n n       . 

Next, let us consider oblique elementary cut segments ( 1,2, ,2 1)jB j n  . For any oblique cuts 

( 1,2, ,2 1)jB j n  , 0 2( ( ) ) 3 6 3 3 2 3 2
jBn S n j j j      . Denote the ( 1,2, ,2 1)jB j n   contribution to the Wiener 

number of  S(n) by 2W . Then we have 0 1 2 3 4 5

2 ( ( ) ) ( ( ) ) 33 1067 5 496 506 224 168 5
j jj

B BB
W n S n n S n n n n n n       . 

 Then, we consider oblique elementary cut segments ( 1,2,3,4)sC s  . Denote the ( 1,2,3,4)sC s  contribution to the Wiener 

number of  S(n) by 3W . Then it is easy to see 0 1 2 3 4

3 ( ( ) ) ( ( ) ) 125 492 1500 912 144
s ss

C CC
W n S n n S n n n n n       . Next, let us 

consider oblique elementary cut segments ( 1,2, ,2 3)lD l n  . For any oblique cuts  

( 1,2, ,2 3)lD l n  ,  0 2( ( ) ) 3(2 1) 2 3(2 1) 2 12(2 1) 6 (12 3 5) 2         
lDn S n n n n n l l .  

Denote the ( 1,2, ,2 3)lD l n   contribution to the Wiener number of  S(n) by 4W . Then we have  
0 1 2 3 4 5

4 ( ( ) ) ( ( ) ) 158 1859 15 475 10 3 164 168 5
l ll

D DD
W n S n n S n n n n n n       . 

Finally, for oblique cut  E, denote the cut  E  contribution to the Wiener number of  S(n)  by 5W . Then we 

have 2 2

5 5(12 38 9) 45 190 60W n n n n      . 

Therefore we have the Wiener number of  S(n)  as 
2 3 4 5

1 2 3 4 5( ( )) 2( ) 271 29176 15 4291 12424 3 1596 1008 5W S n W W W W W n n n n n           . 
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Conveniently, we can get its Wiener entropy 
2 3 4 5 2lim log ( ( )) ( ( )) lim log(271 29176 15 4291 12424 3 1596 1008 5) (12 38 14) 0n nW S n n S n n n n n n n n          . 

and its average distance  2

2 3 4 5 2

12 38 14
( ( )) (271 29176 15 4291 12424 3 1596 1008 5)

n n
W S n n n n n n C

 
      . When  n  gets large 

enough, ( ( ))W S n  approximates to 14 / 5n . 

3.4.  Conclusion  
From our results we can see that in general, if the boundary conditions of the convex honeycomb 

meshes are different, then the asymptotic behaviors of their average distances are also different. However, 

the asymptotic behaviors of their Wiener entropy are independent on their boundary conditions. So, we post 

the following question:  

Which boundary condition can gearatee the different asymptotic behavior of the Wiener entropy for a 

type of tiling ?  
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