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Abstract. In parallel magnetic resonance imaging (pMRI), images between different coils have the similar 

location of the singularities or discontinuities. As sparsifying transform captures the discontinuities in the 

images and can be assumed not to affect the position of the discontinuities in the coil images, the 

corresponding transform results of images from multi-coils can be considered as joint sparse. But previous 

methods do not consider the property for MRI reconstruction when they include both wavelet transform and 

total variation. In this paper, we propose a new method based on fast iterative shrinkage/thresholding 

algorithm (FISTA) and split Bregman algorithm to reconstruct multi-coils images, in which it contains both 

the joint wavelet sparsity (JWS) and the joint total variation (JTV) regularizers. The experimental results of 

phantom and brain images show that our proposed algorithm performs better than the other state-of-the-art 

algorithms. 
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1. Introduction

Magnetic resonance imaging (MRI) has been widely used in clinical diagnosis over the last decades [1-3].

However, the imaging speed is always limited by the physiological factors such as nerve stimulation and the 

physical conditions like slew-rate constraints. To accelerate the MRI scanning speed, many researchers are 

seeking for methods to reduce the amount of necessary k-space data of each coil while preserving adequate 

image quality.  

Compressed sensing MRI (CSMRI) [1] and parallel MRI (pMRI) [2, 3] are two advanced techniques that 

have been widely used to reconstruct MR images when the k-space data are under-sampled. As CSMRI and 

pMRI can reconstruct images from different ancillary information (image sparseness for CS and channel 

sensitivities for pMRI), it is desirable to combine these two techniques to improve image quality without 

increasing the amount of k-space data. In typical pMRI technologies, the authors reconstructed images by 

adopting sensitivity information of each coil. However, any inconsistency due to motion or small errors in 

the sensitivity estimation will lead to significant artifacts in the reconstructed images. In recent years, some 

researchers begin to use compressed sensing instead of estimating the sensitivity information to reconstruct 

the multi-coil image. In JTVMRI [4], since MR images are often piece-wise smooth, non-zero gradients only 

appear on the edges. The author assumes that images from different coils have similar gradient information, 

thereby the gradients are not only sparse but also joint sparse, then the MRI reconstruction problem can be 

solved by joint total variation (JTV). In CaLMMRI [5], as wavelet transform encodes the discontinuities 

about images, the coefficients are very small in smooth areas and large in discontinuous areas. The author 

assumes that the sensitivity profile is smooth, it does not introduce or get rid of any discontinuity. Thus, if 

the discontinuity occurs in the original MR image, it should exist in the sensitivity encoded image. So the 

MRI reconstruction process also can be regarded as a joint wavelet sparsity (JWS) reconstruction problem. 
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IN this paper, we propose a new method to improve image quality without increasing sampling ratio by 

applying CSMRI technique to pMRI. Both popular edge preserving (JTV) and sparsity-promoting (JWS) 

constraints are introduced into the CS-pMRI reconstruction process. The fast iterative shrinkage/thresholding 

algorithm (FISTA) is employed to solve the reconstruction problem based on operator splitting technique [6] 

and split Bregman algorithm [7] is used to solve a subproblem arisen in this model. The experimental results 

of phantom and brain images show that our proposed method can get better image quality than other state-of-

the-art methods.

2. Proposed Method

The parallel MR image reconstruction problem can be expressed as the following minimization problem 

with a linear inequality constraint, in which it contains both JTV and JWS (called JTW):

  2T

22 1
X

X arg min W X + X . . AX B ,
JTV

s t    
，

(1)

where 
1X [x ,...,x ] Rn L

L
  represents a set of vectorial form of  L coils images; A denotes the under-

sampled Fourier operator and has proved to accord with compressed sensing criteria [2], so this MR image 

reconstruction process can be solved by using CSMRI; 
1B [b ,...,b ] Rn L

L
  is the multi-coil under-sampled 

k-space data; TW is an orthogonal wavelet transform and  represents the variance of the signal noise; 

and  are two positive parameters;  
1/2

2

2,1 1 1
X X

n L
ici c 

  represents the summation of the 2l norm for 

each row;    
2 2

1 21 1
X X X

n L
ic icJTV i c 

     , 1 and 2 are the finite difference operators on the 

horizontal and vertical coordinates of an image respectively. Both 
2,1

X and X
JTV

are 21l norm, which is 

convex and non-smooth. 

To solve the JTW model mentioned above, we propose an efficient method based on the FISTA and split 

Bregman algorithm. By exploiting the Bregman distance, the constrained minimization problem in Equation 

(1) can be expressed as follows:

2
1 T

2 2 1
X

1 1

1
X argmin AX B W X + X

2

B B B AX .

k k
JTV

k k k

 

 


  


   

，

(2)

(3)

According to the operator splitting technique based on the proximal operator, the minimization problem 

(2) can be solved by FISTA:

 T

21 T

22,1
X

Y=X A AX B
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X arg min W X + X + X Y .

2

k k k

k
JTV


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


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


 


(4)

(5)

Problem (5) can be further solved by split Bregman algorithm, its split formulation as follows:

 
1 2

221 1 1 1 T

1 2 1 2 X2 1 2,1 2 2
X,Z,D ,D

2 2

1 1 1 2 2 22 2

1
X , Z , D , D argmin Z + D ,D X Y + Z W X B
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D X B D X B ,
2 2

k k k k k
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
 



 

        

     

，
            (6)

where 1 1 2 2D = X D = X ， and TZ=W X ; X 1 2B B B， ， are auxiliary variables.  Then each unknown variable 

can be solved separately.

As X-subproblem is convex and differentiable, it is easy to get optimality conditions for X. By 

differentiating with respect to X, we have:

     T T 1 T T

1 1 2 2 X 1 1 1 2 2 2

1 1
+ + + X = Y+ W Z B D B D B .k k k k k k k     

 

 
           

 
                (7)

As the Z-subproblem is referring to 21l norm instead of 1l norm, it can be solved by a shrinkage operator 

2shrink , which is defined as [8]:
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   2 2

2

x
x, max x ,0 .

x
shrink                                                             (8)

Then the Z-subproblem can be calculated as:

 
    1

T

2 XZ W X B , / , 1,..., ,
j k j kj shrink j n 



   (9)

where  
 1

TW X
j k

is the -thj row of TW X in the  1 -thk  iteration.

For the 1D and 2D -subproblems, we can solve them like isotropic TV by a generalized shrinkage 

formula [9]:

   
   

 

1 1 1
1

X B
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j k j k
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s
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j k j k
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


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 

(10)

(11)

where
          

1/22 2

1 1 2 2X B X B .
j k j k j k j k j ks                                                  (12)

Now, we present the proposed algorithm for constrained JTW problem in Algorithm 1. In the inner loop, 

we set J as 1. Step 1 is the calculation of the gradient of  2

21/ 2||AX B|| . Step 2 that applies split Bregman 

method is summarized, the value of  in (6) is set as 1, the stopping criterion is set as -310 . Step 3 and step 4 

are the acceleration steps in FISTA.

Algorithm 1 Proposed algorithm

Input: 1 0 1 0=1/ , Y X =0 1, B =B, 1L t i   ，

For 1i to K do

For 1j to J do

1. Y is given by (4)

2. X j is given by (5)

3.  1 21 1 4( ) / 2j jt t   

4.  1 1 1Y X ( 1)/ X Xj j j j j jt t     

End for

5. Bi is given by (3)

End for

3. Experiments

3.1. Experimental Setup

In the experiments, two sets of MR data (phantom data and brain data) are employed to demonstrate the 

superiority of our proposed method in parallel MR image reconstruction. The phantom is piecewise smooth 

and strictly sparse, which includes the directional curves. The k-space data of brain image is acquired from 

GE MR750 3T scanner with eight channel coils using T1-weighted fast spin echo (FSE) pulse sequence 

(TR/TE=500/12.9ms, FOV=24cm, 256 256 matrix). The phantom image and brain image are shown in 

Fig. 1 (a) and Fig. 1 (b) respectively. Gaussian sampling mask in Fig. 1 (c) is implemented to under-sample 

the k-space data.

(a)                                        (b)                                     (c)

Fig. 1: Original images and Sampling mask, (a) phantom, (b) brain, (c) Gaussian sampling mask.

Input: 0 0 0 0 0 0 0

1 2 X 1 2X =Z =D =D =B =B =B

While
1

2 2
X X / X 1 3k k k e   do

1. 1Xk is solved by (7)

2. (k 1)Z j  is given by (9)

3. (k 1) (k 1)

1 2D , Dj j  are given by (10), (11) respectively

4. 1 T 1 1

X XB B (W X Z )k k k k    

5. 1 1 1

1 1 1 1B B ( X D )k k k k     

6. 1 1 1

2 2 2 2B B ( X D )k k k k     

End while

Solved by split Bregman



In the following experiments, we compare our method with the state-of-the-art methods such as 

CaLMMRI and JTVMRI which we mentioned before. For reliability, all codes are downloaded from the 

authors’ websites. In all of the experiments, the white Gaussian noise with 0.01 standard deviation is added 

in the K-space data to show the robust of the proposed method. The regularization parameters  and   in 

our algorithm are set as 
-210  and 

-110  respectively. For comparison, three kinds of image quality 

measurement tool are used: 1) peak signal-to-noise ratio (PSNR); 2) structural similarity (SSIM); 3) relative 

error (RE). All experiments were executed, using Windows 7 and MATLAB 2015a (64-bit), on a desktop 

computer with a 3.2GHz Intel Core i5-4460 CPU and 4GB of RAM. 

3.2. Experimental results 

The first set of the experiment is about phantom, the reconstructed images by CaLMMRI, JTVMRI and 

the proposed method are presented in Fig. 2 (left part). The Gaussian random sampling ratio is set as 20% 

and the iteration numbers of these three methods are all set as 100. From the difference images in Fig. 2 (left 

part), we can see that the main artifacts of the CaLMMRI method locate on the edge parts, the other parts of 

the reconstructed image get better image quality compared with the edge parts, while the artifacts of the 

reconstructed image by JTVMRI are evenly distributed. Different from CaLMMRI and JTVMRI, the 

proposed method can reconstruct images where the artifacts are not obvious both on edges and on other parts. 

To make the comparison more intuitive, the reconstruction results at various sampling ratios are presented in 

Table 1. As the sampling ratio improves, the k-space data contain more information and the image quality 

(PSNR, SSIM and RE) of the reconstructed image from different methods (CaLMMRI, JTVMRI and 

proposed method) are all improved. When the sampling rate is fixed, the values of PSNR from CaLMMRI 

are always lower than JTVMRI, while the values of SSIM are higher than JTVMRI. However, it is exciting 

that the proposed method inherits the advantages of CaLMMRI and JTVMRI, and gets the best image quality. 

The second set of experiment is for brain image, the visual reconstructed image results by CaLMMRI, 

JTVMRI and the proposed method are presented in Fig.2 (right part). The Gaussian random sampling ratio is 

also set as 20% and the iteration number is set as 120. Similarly, the main artifacts caused by the CaLMMRI 

method focus on edge, and the one in smooth region reconstructed by JTVMRI are quite obvious compared 

with the CaLMMRI method, while the proposed method can reduce the artifacts prominently both in edges 

and in smooth region since it inherits the advantage of both CaLMMRI and JTVMRI. The reconstructed 

results at various sampling ratios for the brain image are also shown in Table 1. From the value of PSNR and 

SSIM, we can find that the JTVMRI performs better than CaLMMRI when the sampling ratio is high, and 

when the sampling ratio is very low, such as 18%, the performance of them on the contrary, while the 

proposed method always performs best no matter the sampling rate is high or low. In a word, compared with 

the other methods, the proposed method shows better image reconstruction results in both smoothly varying 

regions and sharp edges. 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Reconstructed results of phantom image (left part) and brain image (right part) using Gaussian sampling mask. 

(a-c) are the reconstructed images by CaLMMRI, JTVMRI and the proposed method respectively, (d-f) are the 

corresponding difference images. 
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4. Conclusion 

In this paper, inspired by the property that MR images from different coils are joint sparse not only in the 

wavelet transform domain but also in the gradient domain, we put forward a novel MRI reconstruction model 

that contains both JWS and JTV. To solve this model efficiently, we first translate the constrained problem 

into a series of unconstrained problems by adopting the Bregman iteration technique. Then FISTA is applied 

to solve and accelerate the unconstrained problems. Finally, we adopt the split Bregman algorithm to solve 

the denoising problem which contains the combination of JWS and JTV regularization terms. The 

experimental results demonstrate that our proposed method can reconstruct the MR images from highly 

under-sampled k-space data faithfully and outperforms the other two state-of-the-art methods obviously. The 

proposed method is expected to replace the traditional parallel imaging algorithm which adopting sensitivity 

estimation.   In the future, we will make further efforts to reduce the complexity of the proposed method. 

TABLE I: RECONSTRUCTION RESULTS FOR PHANTOM AND BRAIN IMAGES WITH DIFFERENT GAUSSIAN RANDOM 

SAMPLING RATIOS 

Sampling ratio method 
pSNR(dB) 

phantom/brain 
SSIM 

phantom/brain 
RE(%) 

phantom/brain 

18% 
CaLMMRI 
JTVMRI 
proposed 

36.19/41.41 
36.43/38.73 
43.69/42.56 

0.84/0.948 
0.54/0.829 
0.89/0.956 

9.51/8.33 
9.25/11.34 
4.01/7.30 

20% 
CaLMMRI 
JTVMRI 
proposed 

38.06/42.35 
44.61/42.35 
55.20/44.34 

0.88/0.962 
0.68/0.946 
0.94/0.973 

7.67/7.48 
3.60/7.48 
1.07/5.95 

25% 
CaLMMRI 
JTVMRI 
proposed 

41.96/44.06 
48.39/44.29 
60.80/46.01 

0.94/0.971 
0.77/0.971 
0.99/0.980 

4.89/6.14 
2.33/5.98 
0.56/4.91 

27% 
CaLMMRI 
JTVMRI 
proposed 

44.00/44.62 
49.66/44.90 
62.83/46.66 

0.96/0.973 
0.80/0.974 
0.99/0.982 

3.87/5.76 
2.02/5.58 
0.44/4.55 
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