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Abstract. Next generation sequencing on metagenomes produces a lot of valuable biological and 
biomedical data but still with some errors. For examples, chimeras are basically originated from biological 
reactions, while taxonomic classification errors are easily resulted from bioinformatics pipelines. In this 
study the microbial compositions in the starter (Daqu) of Chinese GujingTribute liquor, especially the 
dominant species or OTUs (operational taxonomic unit), were determined by two approaches, one is the near 
full length ribosome gene (16S rDNA plus the internal transcribed spacer (ITS)) library sequencing, and 
another is 16S rDNA V4-V5 region based next generation sequencing approach. The two approaches gave 
discrepant results for both the prokaryotic microbes and eukaryotic ones. Especially, the results for 
prokaryotic microbes showed apparent differences in that (1)The most dominant species or OTU belong to 
different phyla; (2) The 20 most dominant species or OTUs overlapped only partially. Further investigation 
indicated that the bioinformatics analysis pipeline itself was sometimes an important source for discrepancy 
generation.  
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1. Introduction 

Progresses in microfluidic machinery and nanotechnology brought tremendous improvement in high 
throughput biotechnologies, including different platforms of next generation DNA sequencing. Such 
platforms are both technology pipelines and bioinformatics pipelines. In life sciences and environmental 
engineering fields, one hot spot is metagenome-based DNA sequencing and related functional studies, in 
which bioinformatics pipelines employ simple statistical algorithms and a series of DNA databases to 
classify a large amount of DNA sequences deciphered from thousands of microbial community species. 
Apparently, the classification accuracy is very important because it may affect a lot on the final biological 
conclusion or medical detection decision. 

There are a batch of typical metagenome sequencing study cases, including soil [1], gut [2], marine water 
[3], fermentation pits [4], waste treatment microbes [5], sea bed [6], and some specific niche such as hospital 
hallway air microbes. At present, there are several methods to decode microbial population structures, 
including traditional pure culture [7], library sequencing [8-9], PCR-DGGE [10], and several types of next-
generation sequencing (NGS) [11-12]. NGS technology is rapidly employed in hundreds of laboratories with 
lower and lower cost, but the short read of target genes (such as 16S rDNA variable regions) brings a great 
limitation on sequencing data implications. NGS technologies using full-length ribosome genes are 
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considered still inmature [13] and may need to take several years to be fully developed. Meanwhile, the de 
novo sequencing technology [14] can assemble long genome fragments for dominant species in a 
metagenome sample with, unfortunately, still very high cost. 

Hahn et al [16] employed two NGS platforms, MiSeq and PacBio RSII, to characterize the cystic fibrosis 
lung microbiome, and found that MiSeq allowed for the observation of many more operational taxonomic 
units (OTUs) and higher Chao1 and Shannon indices than the PacBio RSII, while only PacBio RSII was able 
to identify Burkholderia, an important cystic fibrosis pathogen. Such results, if used in supplementary 
diagnosis, would lead to different decisions because only one platform was able to detect the pathogen.  

This study used a complex microbial community sample, the fermentation starter (Daqu), in the ethanol 
industry. GujingTribute [15] is one of the representative strong-aroma types of Chinese liquor. However, 
knowledge of the relationship between its flavor and fermentative microbes has been little, so detailed 
deciphering of Daqu microbial compositions shall be the first step to investigate the above relationship.  

In this study, the microbial composition was decoded by two approaches, one is the Illumina Miseq for 
16S rDNA V4-V5 plus ITS region (NGS approach), and another is full-length 16S rDNA \ITS amplification-
TA cloning-Sanger sequencing (TA-clone approach). The two approaches were expected to generate the 
highly similar namelists of dominant species (or OTUs) for the same Daqu sample, but the results showed 
that there were apparent discrepancy between the namelists, and especially, the most dominant species in 
TA-clone approach was not the most dominant OUT in the NGS approach. Further analysis indicated that the 
error was largely derived from the database quality, a key element in the NGS bioinformatics pipeline. 

2. Materials and Methods 

2.1. Sampling 

Randomly selected twelve Daqu bricks were smashed and well-mixed into one mix-sample. 
Metagenome DNA was extracted as previously published protocol [15], then subjected to Illumina Miseq 
next generation sequencing platform (16S rDNA V4-5) and full-length 16S /ITS rDNA TA-cloning to 
decipher the microbial compositions. 

2.2. Decoding microbial population composition by next generation sequencing (NGS) 

Metagenomic DNA was extracted from the above prepared production Daqu sample using Solarbio 
D2600 kit for genome purification. Each 200mg sample generated 100ul metagenome DNA. The 390bp V4-
V5 region of the 16S rRNA gene was amplified using the primer set 520F (5’-7bp barcode+ GCA CCT AAY 
TGG GYD TAA AGNG-3’) and 904R (5’- CCG TCA ATT CCT TTR AGT TT -3’).  For ITS, two primers 
were use as follow: ITS1 (5’-TCCGTA GGT GAA CCT GCG G-3’) and ITS4 (5’-TCC TCC GCT TAT 
TGA TAT GC-3’). PCR was set up with high fidelity system (0.25ul Q5 high-fidelity DNA polymerase, 5ul 
5×Reaction Buffer, 5ul 5×High GC Buffer , 0.5ul dNTP (10mM), 1 ul each primer (10uM), dH2O 11.25ul) 
and performed according to the following: 98°C-30s, (98°C-15s, 50°C-30s, 72°C-30s) for 26 cycles, 72°C-
30s plus 72°C-5min. PCR amplicons were purified, further processed and subjected to Illumina Miseq 
platform. All the raw sequence data were processed in the QIIME pipeline [17]. PCR chimeras were checked 
and removed using the UCHIME software. The remaining good-quality sequences were clustered into 
operational taxonomic units (OTUs) using a 97% identity threshold with QIIME’s UCLUST tool. The most 
abundant sequence of each OTU was picked as the representative sequence. The taxonomic information of 
each representative sequence, also the taxonomic information of each OTU, was annotated using Greengenes 
database Release 13.8 classifier [18]. 

2.3. Deciphering microbial community structures with full-length 16S /ITS rDNA TA-
cloning (TA-clone) 

The whole experimental process can be seen in our lab’s publication using the universal primers 27F and 
1492R [15]. For ITS amplification, primer ITS1 (5’-TCCGTA GGT GAA CCT GCG G-3’) and ITS4 (5’-
TCC TCC GCT TAT TGA TAT GC-3’) were used. Positive colonies were subjected to Sanger sequencing 
using the same PCR primers. Each pair of bidirectional sequences was assembled as one single sequence 
with correct direction. Short sequences without primers on both ends were removed from the data and the 
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residual vector bases and primer bases on both ends were deleted (LaserGene, DNAStar). Then the 
sequences were subjected to chimera checking using UCHIME [19] in mothur software [20]. The sequences 
with chimeric parts were removed from the data. Finally, the remained sequence was used for further 
taxonomic analysis. For ITS sequences the UNITE Database was employed using User-friendly Nordic ITS 
Ectomycorrhiza Database (https://unite.ut.ee/index.php) [21]. The obtained taxonomic information was 
inspected and corrected manually based on known microbial community knowledge and BLAST (Basic 
Local Alignment Search Tool) plus RDP (rdp.cme.msu.edu) results. After chimera removal, refined 
sequences were deposited in the GenBank under the accession numbers KX603403-KX603652 (bacterial 
16S rRNA) and KX911990-KX912161 (fungal ITS). 

3. Results and Discussion 

3.1. Bacterial compositions 

For NGS approach, a total of 30353 good quality prokaryotic sequences with an average length of 390 bp 
were obtained after quality filtering. At the 97% identity level, 515 OTUs were classified (data not shown). 
The most dominant twenty OTUs were listed in Table 1. For TA-clone approach, using a 97% cutoff, 215 
among 249 sequenced clones showed species-level information (data not shown). The most dominant ten 
species were listed in Table 2. The prefixes “p_”, “g_”, “s_” indicated OTUs were annotated to the level of 
phylum, genus, or species, respectively. 

Table 1. The most abundant 20 prokaryotic OTUs detected with 16S rDNA V4-5 (OTU level) 
 #OTU ID Read  Abundance (%) taxonomy 
1 denovo450 11970 39.43 p_Proteobacteria; g_Erwinia; s_ 
2 denovo41 2301 7.58 p_Firmicutes; g_Staphylococcus; s_succinus 
3 denovo376 1899 6.25 p_Firmicutes; g_Leuconostoc; s_ 
4 denovo105 1581 5.20 p_Actinobacteria; g_Streptomyces; s_ 
5 denovo380 1511 4.97 p_Firmicutes; g_Lactobacillus; s_paraplantarum 
6 denovo76 1434 4.72 p_Firmicutes; g_Lactobacillus; s_brevis 
7 denovo309 1267 4.17 p_Firmicutes; g_Thermoactinomyces; s_sanguinis 
8 denovo379 1128 3.71 p_Firmicutes; g_Lactobacillus; s_ 
9 denovo420 748 2.46 p_Proteobacteria; g_Sarcandra; s_grandifolia 
10 denovo177 573 1.88 p_Firmicutes; g_Lactobacillus; s_ 
11 denovo99 529 1.74 p_Firmicutes; g_Bacillus; s_ 
12 denovo178 528 1.73 p_Cyanobacteria; g_; s_ 
13 denovo282 478 1.57 p_Proteobacteria; g_Burkholderia; s_ 
14 denovo312 414 1.36 p_Proteobacteria; g_Enterobacter; s_ 
15 denovo220 301 0.99 p_Proteobacteria; g_Rhodanobacter; s_ 
16 denovo144 221 0.72 p_Proteobacteria; g_Erwinia; s_oleae 
17 denovo6 211 0.69 p_Firmicutes; g_Pediococcus; s_acidilactici 
18 denovo476 201 0.66 p_Proteobacteria; g_Pseudomonas; s_ 
19 denovo154 169 0.55 p_Firmicutes; g_Lactobacillus; s_ 
20 denovo330 138 0.45 p_Actinobacteria; g_Rhodococcus; s_ 

Table 2. Bacterial compositions in GujingTribute Daqu determined by TA-clone approach (species level) 
 Species Abundance (%) Taxonomy BLAST similarity 

level (%) 
1 Virgibacillus halotolerans 38.37 p_Firmicutes; g_Virgibacillus 99 
2 Thermoactinomyces sanguinis 19 p_Firmicutes; g_Thermoactinomyces 99 
3 Virgibacillus sp. 6.48 p_Firmicutes; g_Virgibacillus 100 
4 Lactobacillus plantarum 6.34 p_Firmicutes; g_Lactobacillus  99 
5 Pantoea agglomerans 5.94 p_Proteobacteria; g_Pantoea  99 
6 Staphylococcus sp.  4.52 p_Firmicutes; g_Staphylococcus  100 
7 Pantoea vagans 4.32 p_Proteobacteria; g_Pantoea  99 
8 Lactobacillus sp. 3.24 p_Firmicutes; g_Lactobacillus 98 
9 Bacillus sp. 2.16 p_Firmicutes; g_Bacillus  99 
10 Staphylococcus kloosii  2.16 p_Firmicutes; g_Staphylococcus 100 
11 Bacillus subtilis 1.62 p_Firmicutes; g_Bacillus 99 
12 Bacillus licheniformis 0.74 p_Firmicutes; g_Bacillus 99 
13 Planomicrobium sp.  0.54 p_Firmicutes; g_Planomicrobium  100 
14 Lactobacillus brevis 0.54 p_Firmicutes; g_Lactobacillus 100 
15 Lactobacillus fermentum 0.54 p_Firmicutes; g_Lactobacillus 99 
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16 Lactobacillus pontis 0.54 p_Firmicutes; g_Lactobacillus 99 
17 Lactobacillus rossiae 0.54 p_Firmicutes; g_Lactobacillus 100 
18 Weissella sp. 0.54 p_Firmicutes; g_Weissella  100 
19 Enterobacter hormaechei 0.54 p_Proteobacteria; g_Enterobacter  99 
20 Pantoea ananatis  0.54 p_Proteobacteria; g_Pantoea  99 

Table 3. Bacterial compositions in GujingTribute Daqu (genus level) 
TA-clone NGS  

Abundance (%) Taxonomy Abundance (%) Taxonomy 
44.85 p_Firmicutes; g_Virgibacillus; 40.15 p_Proteobacteria; g_Erwinia 
19 p_Firmicutes; g_Thermoactinomyces  15.83 p_Firmicutes; g_Lactobacillus 
11.74 p_Firmicutes; g_Lactobacillus 7.58 p_Firmicutes; g_Staphylococcus 
10.8 p_Proteobacteria; g_Pantoea  6.25 p_Firmicutes; g_Leuconostoc 
6.68 p_Firmicutes; g_Staphylococcus 5.20 p_Actinobacteria; g_Streptomyces  
4.52 p_Firmicutes; g_Bacillus 4.17 p_Firmicutes; g_Thermoactinomyces 
0.54 p_Firmicutes; g_Planomicrobium  2.46 p_Proteobacteria; g_Sarcandra 
0.54 p_Firmicutes; g_Weissella  1.74 p_Firmicutes; g_Bacillus 
0.54 p_Proteobacteria; g_Enterobacter  1.73 p_Cyanobacteria; g_ 

3.2. Eukaryotes compositions 

For eukaryotic data, a total of 15591 good quality sequences with an average length of 265 bp were 
obtained after quality filtering. At the 97% identity level, 84 OTUs were classified (data not shown). The 
most dominant twenty OTUs were listed in Table 4. For TA-clone approach, all 172 curated sequences of 
ITS clones can give species-level annotation (data not shown). The most dominant ten species were listed in 
Table 5. 

Table 4. The most abundant 20 eukaryotic OTUs detected with ITS (OTU level) 
 #OTU ID Read Abundance (%) taxonomy 
1 denovo61 4623 29.65 p_Ascomycota; g_Aspergillus; s_Aspergillus flavus 
2 denovo60 2903 18.61 p_Zygomycota; g_Rhizopus; s_Rhizopus arrhizus 
3 denovo46 2627 16.84 p_Zygomycota; g_Rhizomucor; s_Rhizomucor pusillus 
4 denovo66 791 5.07 p_Ascomycota; g_Paecilomyces; s_Paecilomyces verrucosus 
5 denovo42 754 4.83 p_Ascomycota; g_unidentified; s_Saccharomycetales sp 
6 denovo43 661 4.23 p_Ascomycota; g_Aspergillus; s_Aspergillus cibarius 
7 denovo19 580 3.72 p_unidentified; g_unidentified; s_Plantae sp 
8 denovo21 519 3.32 p_Ascomycota; g_Thermomyces; s_Thermomyces lanuginosus 
9 denovo6 488 3.13 p_Ascomycota; g_Candida; s_Candida xylopsoci 
10 denovo49 407 2.61 p_unidentified; g_unidentified; s_Plantae sp 
11 denovo64 232 1.48 p_Ascomycota; g_unidentified; s_Eurotiomycetes sp 
12 denovo4 159 1.01 p_Zygomycota; g_Lichtheimia; s_Lichtheimia ornata 
13 denovo51 116 0.74 p_Ascomycota; g_Thermoascus; s_Thermoascus aurantiacus 
14 denovo28 108 0.69 p_Ascomycota; g_Aspergillus; s_Aspergillus piperis 
15 denovo8 103 0.66 p_Ascomycota; g_Candida; s_Candida blattae 
16 denovo5 86 0.55 p_Ascomycota; g_Aspergillus; s_Aspergillus candidus 
17 denovo53 60 0.38 p_Ascomycota; g_Wickerhamomyces; s_Wickerhamomyces anomalus 
18 denovo59 48 0.30 p_Ascomycota; g_Penicillium; s_Penicillium polonicum 
19 denovo77 38 0.24 p_Ascomycota; g_Penicillium; s_Penicillium citrinum 
20 denovo68 27 0.17 p_Ascomycota; g_Monascus; s_Monascus purpureus 

Table 5. Eukaryotic compositions in GujingTribute Daqu determined by TA-clone approach (species level) 
 Species Abundance (%) Taxonomy BLAST similarity level (%) 
1 Rhizopus_ arrhizus 45.09 p_Zygomycota;g_Rhizopus 100 
2 Aspergillus_flavus 14.63 p_Ascomycota; g_Aspergillus 100 
3 Thermomyces_lanuginosus 13.94 p_Ascomycota; g_Thermomyces 100 
4 Aspergillus_amstelodami  8.02 p_Ascomycota; g_Aspergillus 100 
5 Thermoascus_crustaceus 6.44 p_Ascomycota; g_Thermoascus 99 
6 Thermoascus_aurantiacus  5.31 p_Ascomycota; g_Thermoascus 100 
7 Penicillium_chrysogenum 1.94 p_Ascomycota; g_Penicillium 100 
8 Pichia_kudriavzevii 1.94 p_Ascomycota; g_Pichia 99 
9 Aspergillus_candidus 0.96 p_Ascomycota; g_Aspergillus 99 
10 Lichtheimia_ramosa 0.96 p_Zygomycota; g_Lichtheimia 100 

3.3. The discrepancy is related with data processing pipelines 
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Though Table 6 suggested that the two approaches generate apparent discrepancy on characterization of 
eukaryotic species, from the Table 2 and Table 3, however, discrepancy in prokaryotic microbial 
compositions may be more dramatic. It was clear that the most dominant bacterial species was a 
Virgibacillus (Firmicute) strain, while Table 1 and Table 3 demonstrated that the most dominant OTU was a 
Erwinia (Proteobacteria) microbe. Because they belonged to different phyla, the classification discrepancy 
looked unacceptable. The NGS platform in this study used GreenGenes database to annotate each filtered 
sequence while the TA-clone approach used BLAST and RDP as annotation tools, and that may be the 
reason why the most dominant OTU (denovo 450) [22] was classified as an Erwinia species (OTU). If the 
representative sequence of OTU 450 was tested on BLAST and RDP databases, it would be assigned as a 
Pantoea agglomerans strain, relatively consistent with the TA-clone result (Table 2) in which Pantoea 

agglomerans was the 5th most dominant species. 
Table 6. Eukaryotic compositions in GujingTribute Daqu (genus level) 

TA-clone NGS 
Abundance (%) Taxonomy Abundance (%) Taxonomy 
45.09 p_Zygomycota;g_Rhizopus  35.12 p_Ascomycota; g_Aspergillus 
23.61 p_Ascomycota; g_Aspergillus 18.61 p_Zygomycota; g_Rhizopus 
13.94 p_Ascomycota; g_Thermomyces 16.84 p_Zygomycota; g_Rhizomucor 
11.75 p_Ascomycota; g_Thermoascus 5.07 p_Ascomycota; g_Paecilomyces  
1.94 p_Ascomycota; g_Penicillium 4.83 p_Ascomycota; g_unidentified  
1.94 p_Ascomycota; g_Pichia 3.72 p_unidentified; g_unidentified 
0.96 p_Zygomycota; g_Lichtheimia 3.32 p_Ascomycota; g_Thermomyces 

Metagenome sequencing and sequence annotation rely heavily on the bioinformatics databases in which 
RDP [rdp.cme.msu.edu], GreenGenes [greengenes.secondgenome.com], SILVA [http://www.arb-silva.de] 
and NCBI [www.ncbi.nlm.nih.gov/nucleotide] are all good ones. However, for ribosome genes, GreenGenes 
contains most high-quality sequences and loses the general coverage range in that some different taxonomic 
elements are only in those low or intermediate quality sequences.  For NCBI source, it has many misleading 
or wrong sequences (such as some chimeras) due to a historic reason and those low quality or wrong 
sequences have not been re-confirmed and cleaned. However, RDP has a general coverage that is between 
GreenGenes and NCBI in the context of ribosome gene representations. So as one important step in the 
bioinformatics pipeline, database quality curation is a continuous and stringent task from now on. On the 
other hand, choice of a specific NGS protocol for a specified research task is also critical; for example, Yang 
et al [23] conducted a survey for sensitivity and correlation of hypervariable regions in 16S rRNA genes in 
phylogenetic analysis and found that V4-V6 region was best to represent the optimal sub-regions of a new 
phylum. 

4. Conclusion 

In conclusion, metagenome sequencing generates large amount of DNA sequences that are subjected to 
possible wrong or misleading annotations due to some systematic error in bioinformatics analysis pipelines. 
Sometimes such an error or discrepancy may lead to big difference in the final biological research conclusion 
or biomedical detection decision. The results in this study further confirmed that several different approaches 
shall be considered at the same time for accurately determining compositions of a complex microbial 
community and database quality curation shall be a systematic and continuous endeavor worldwide. In the 
future, the authors would like to develop some novel nanoparticle-assisted DNA amplification techniques 
with higher fidelity than those used in the present NGS approaches so that some sequence errors can be 
avoided before they enter the following bioinformatics pipelines. 
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