The Minimal Kirchhoff Index Of Theta Shape Graph

Xiaomin Ren¹, Jinyu Zou² and Haizhen Ren¹⁺

¹ Department of Mathematics, Qinghai Normal University, Xining 810008, Qinghai, China

² Department of Basic Courses, Qinghai University, Xining 810016, Qinghai, China

Abstract. The resistance distance between any two vertices of a connected graph G is defined as the effective resistance between them in the electrical network constructed from G by replacing each edge of G with unit resistor. Kirchhoff index is a structure-descriptor based on resistance distance. For the theta shape graphs(a specified class of bicycle graphs), the ordering rations of their Kirchhoff index remain open. In this paper, some new ordering relations are obtained by three graph transformations, and the minimal Kirchhoff index and the corresponding graph in this class of graphs is also discussed.

Keywords: electrical network, resistance distance, Kirchhoff index, theta shape graph

1. Introduction

On the basis of electrical network theory, Klein and Randic[1] introduced the novel concept of resistance distance. Let G be a connected graph with vertices labelled as 1, 2, ..., n. They view G as an electrical network N by considering each edge of G as a unit resistor, then the resistance distance between vertices i and j, denoted by r_{ij} , is defined to be the effective resistance between nodes i and j as computed with Ohm's law in N. The Kirchhoff index of G, denoted by Kf(G)[1], is the sum of resistance distance between all pairs of vertices in G. The original index based on distance in a graph G is the famous Wiener index W(G) [2], which counts the sum of distance between all pairs of vertices in G. Klein and Randic proved that Kf(G) \leq W(G) with equality if and only if G is a tree. Kirchhoff index is a structure-descriptor based on resistance distance. The investigation on the Kirchhoff index of graph is an important topic in the theory of graph. It is difficult to implement some algorithms to compute resistant distance and Kirchhoff index in a graph from their computational complexity. Hence, it makes sense to find closed-form formulae for the Kirchhoff index[1,3]. In present, to compute resistance distances, various methods have been developed, and relevant formulae for resistance distance have been given for some classes of graphs, and some relevant indices to Kirchhoff index are also discussed [3-11].

The bicycle graphs are connected graphs whose number of vertices is one more than the number of edges. The first and second classes of these graphs have been discussed, and their ordering relations and extreme graphs are obtained [12]. In this paper, we will pay attention to the third class of graphs, i.e. the theta shape graphs(as shown in Fig.1 (1)). We denote the theta shape graph with n vertices by $\Theta_n \, \cdot \, \Theta'_n$ denotes the theta shape graph with n vertices, and the number of the vertices on the essential circles is t. For the theta shape graphs, the ordering rations of their Kirchhoff indices remain open. By the graph transformations, we find some ordering relations of Kirchhoff indices and discuss the minimal Kirchhoff index for this class of graphs.

2. Main Results

2.1. Three graph transformations and some ordering relations

⁺ Corresponding author. Tel.: +09716307622; fax: +09716307622. *E-mail address*: haizhenr@126.com

Let G be a simple undirected graph with the vertex set V(G). We denote the number of the vertices of G by |V(G)|, and we use $u \in V(G)$ and V(G)|u respectively to denote a vertex u of G and a vertex set that arises from G by deleting the vertex u. Denote d(u,v) and r(u,v)(or $\Omega(u,v)$ in an electrical network N), respectively, by the distance and the resistance distance between two vertices u, v of G. The sum of the resistance distance from v_i to other vertices of G is denoted by $Kf_{v_i}(G)$. The following lemmas will be used in sequel:

Lemma 1.1([13]) Let T be a tree with n vertices different from the path with n vertices denoted by P_n and the star with n vertices denoted by S_n . Then $W(S_n) \le W(T) \le W(P_n)$.

Lemma 1.2([12]) Let x be a cut vertex of a connected graph G such that G-x has exactly two branches G₁ and G₂. Let G'_i be the subgraph induced by $G_i \cup \{x\}(i=1,2)$. Then

$$Kf(G) = Kf(G'_1) + Kf(G'_2) + (|V(G'_1)| - 1)Kf_x(G'_2) + (|V(G'_2)| - 1)Kf_x(G'_1)$$
(1)

Lemma 1.3([13]) The Kirchhoff Index of a tree is equivalent to its Wiener index.

Lemma 1.4([14,15]) For a circle G, $Kf(G) = (n^3-n)/12$.

Lemma 1.5([11]) Let G be a connected graph with e=ij being an edge. Let G'=G-e and G''=G. Then

$$\Omega(p,q) = [1 - \Omega(i,j)] \cdot \Omega'(p,q) + \Omega(i,j)\Omega^*(p,q)$$
(2)

Lemma 1.6([11]) Let Ω and Ω' be resistance distance functions for edge-weighted connected graphs G and G' which are the same except for the weights ω and ω' on an edge e=ij. Then

$$Kf(G') = Kf(G) - \frac{\delta n \sum_{k=1}^{n} [\Omega(i,k) - \Omega(j,k)]^2 - \delta [\sum_{k=1}^{n} \Omega(i,k) - \sum_{k=1}^{n} \Omega(j,k)]^2}{4[1 + \delta \Omega(i,j)]}$$

where $\delta = \omega' - \omega$.

Fig. 1 The theta shape graph and the transformations I-II

Claim 1. G₀ ∈ Θ_n is the graph with the minimal Kirchhoff index, for any cut vertex v_i with hanging tree T_i in G₀, T_i is a star, and v_i is its central vertex.

Proof. Assuming that T_i is not a star in G_0 (See Fig.1 (2)), then we apply the following graph transformation I:

Transformation I: We obtain G_1 from G_0 by deleting all the edges of T_i in G_0 and joining them with v_i , that is to say, we change T_i in G_0 to the star S_i attaching to v_i in G_1 .

By Lemma 1.1, we have $Kf(S_i) < Kf(T_i)$ and $Kf_{v_i}(S_i) < Kf_{v_i}(T_i)$. v_i is a cut vertex of G_0 . Assume that G_{01} and T_i are two branches of G_0 - v_i . G_{01} and T_i are the subgraphs induced by $V(G_{01}) \cup \{v_i\}$ and $V(T_i) \cup \{v_i\}$, respectively. By Lemma 1.2, we have

$$Kf(G_0) = Kf(G'_{01}) + Kf(T'_i) + (|V(G'_{01})| - 1)Kf_{v_i}(T'_i) + (|V(T'_i)| - 1)Kf_{v_i}(G'_{01})$$

We denote that G_{11} and S_i are two branches of $G_1 - v_i$, G'_{11} and S'_i are the subgraphs induced by $V(G_{11}) \bigcup \{v_i\}$ and $V(S_i) \bigcup \{v_i\}$, respectively. Also by Lemma 1.2,

$$Kf(G_{1}) = Kf(G_{11}) + Kf(S_{i}) + (|V(G_{11})| - 1)Kf_{v_{i}}(S_{i}) + (|V(S_{i})| - 1)Kf_{v_{i}}(G_{11})$$

Since $Kf(G_{01}) = Kf(G_{11})$, $|V(G_{01})| = |V(G_{11})|$ and $|V(T_i)| = |V(S_i)|$. Then we get $Kf(G_1) < Kf(G_0)$. It is a contradiction.

• Claim 2. For $k \le l$, the transformation II is shown as in Fig.1 (3), then $Kf(G_2) > Kf(G_1)$. Proof. By Lemma 1.3, we have

$$Kf_{v_{k}}(G_{1}) = \sum_{u \in V(P_{k})} r(v_{k}, u) + \sum_{u \in V(G)} r(v_{k}, u) + \sum_{u \in V(P_{i})} r(v_{k}, u) = \frac{k(k-1)}{2} + \sum_{u \in V(G)} [k + r(v_{0}, u)] + \sum_{i=1}^{l} [k + r(v_{0}, w_{0}) + i]$$
$$= \frac{k(k-1)}{2} + k |V(G)| + Kf_{v_{0}}(G) + kl + \frac{l(l+1)}{2} + l \cdot r(v_{0}, w_{0})$$

and

$$Kf_{w_{l}}(G_{1}) = \sum_{u \in V(P_{k})} r(w_{l}, u) + \sum_{u \in V(G)} r(w_{l}, u) + \sum_{u \in V(P_{l})} r(w_{l}, u) = \frac{l(l-1)}{2} + \sum_{u \in V(G)} [l + r(w_{0}, u)] + \sum_{i=1}^{k} [l + r(w_{0}, v_{0}) + i]$$
$$= \frac{l(l-1)}{2} + l |V(G)| + Kf_{w_{0}}(G) + kl + \frac{k(k+1)}{2} + k \cdot r(w_{0}, v_{0})$$

So, $Kf_{w_{l}}(G_{1}) - Kf_{v_{k}}(G_{1}) = (l-k)[|V(G)| - r(v_{0},w_{0}) - 1]$. Since $|V(G)| - 1 \ge r(v_{0},w_{0})$ and $l-k \ge 0$. Then $Kf_{v_{k}}(G_{1}) \le Kf_{w_{l}}(G_{1})$. Thus, $Kf_{v_{k}}(G_{2}) = Kf_{w_{l}}(G_{1}) - r_{G_{l}}(w_{l},v_{k}) + |V(G_{1})| - 1 > Kf_{w_{l}}(G_{1})$. Therefore $Kf_{v_{k}}(G_{2}) > Kf_{v_{k}}(G_{2}) > Kf_{v_{k}}(G_{1})$. Since $Kf(G_{2}) - Kf(G_{1}) = Kf_{v_{k}}(G_{2}) - Kf_{v_{k}}(G_{1})$. Then we get $Kf(G_{2}) > Kf(G_{1})$.

 Claim 3. G₀ ∈ Θ_n is the graph with the minimal Kirchhoff index, the central vertices of the stars must have three neighbors besides the leaves of the stars.

Proof. In Fig.1 (4), for the graph G there is an automorphism Φ such that $\Phi(\omega_0) = \Phi(v_0)$, $|V(G)| \ge 3$, and $d(v_0, w_0) \ge 2$. Then, for any $u \in V(G)$, $r(v_0, u) = r(\omega_0, u)$. In Fig.1 (5), note that $i < j \le m$, for any vertex $q \in V(G)$, by Lemma 1.5 we have $r_G(l,q) = [1 - r_G(l,l+1)] \cdot r_G(l,q) + r_G(l,l+1) \cdot r_G(l,q)$.

If $1 \le l \le [i/2]$ then $r_{G_1}(l,q) < r_{G_1}(l+1,q)$; and if [i/2] < l < i then $r_{G_1}(l,q) > r_{G_1}(l+1,q)$. So the relation of $Kf_{v_i}(G)$ and $Kf_{v_i+1}(G)$ is $Kf_{v_i+1}(G)$ when $1 \le l \le [i/2]$, and $Kf_{v_i}(G) > Kf_{v_i+1}(G)$ when [i/2] < l < i. Thus, we get the graph G_0 as shown in Fig.1 (6).

Fig. 2 The transformation III and the extreme graph

Claim 4. In Fig.2 (7), we assume that T_i and T_j are nontrivial stars in G₁, which are hanging to the central vertices v_i and v_j, respectively, and assume that u_i is a leave of T_i and u_j is a leave of T_j. When *Kf_{u_i}(G₁) ≤ Kf_{u_j}(G₁)*. We apply the transformation III to G₁. The resulting graph is G₂ (as shown in Fig. 2 (7)). Then *Kf*(G₂) < *Kf*(G₁).

Proof. For any two vertices $v_k, v_l \in V(G_l) \setminus u_j$ (t=1,2), we know that $r_{G_l}(v_k, v_l) = r_{G_l}(v_k, v_l)$ and

$$Kf_{u_i}(G_2) = Kf_{u_i}(G_2) = Kf_{u_i}(G_1) - r_{G_1}(u_i, u_j) + 2 < Kf_{u_i}(G_1) \le Kf_{u_i}(G_1) .$$

So, $Kf(G_2) = Kf(G_1) - Kf_{u_i}(G_1) + Kf_{u_i}(G_2) < Kf(G_1)$.

By Claim 4, we have the following Claim 5:

Claim 5. G₀ ∈ Θ_n is the graph with the minimal Kirchhoff index, S_i is the only nontrivial star with the central vertex v_i.

Claims 1, 3 and 5 demonstrate the following Theorem .

Theorem If $G \in \Theta_n$, and $G \neq \Theta'_n$ (Θ'_n is shown as in Fig.2 (8), the number of the vertices on the essential circles is t), then $Kf(G) > Kf(\Theta'_n)$.

2.2. The minimal Kirchhoff index and the corresponding graph

We consider the graph Θ_n^t . For Θ_n^t , if t=4, i=3 and j=4, denote Θ_n^t by G_{i_1} ; and if t=5, i=3 and j=5, denote Θ_n^t by G_{i_2} ; and if t=6, i=4 and j=6, denote Θ_n^t by G_{i_3} ; and if t=6, i=3 and j=6, denote Θ_n^t by G_{i_4} . According to that Lemma 1.6, we obtain that $Kf(G_{i_1})=15n/4-11$ by choosing the edge e_{13} , $Kf(G_{i_2})=53n/11-175/11$ by choosing the edge e_{13} , $Kf(G_{i_3})=89n/15-107/5$ by choosing the edge e_{14} , and $Kf(G_{i_4})=87n/14-317/14$ by choosing the edge e_{13} . So, by simple comparing we find that $Kf(G_{i_4}) < Kf(G_{i_5}) < Kf(G_{i_5}) < Kf(G_{i_5}) < Kf(G_{i_5}) < 1000$ ($n \ge 4.93$) and $Kf(G_{i_5}) < Kf(G_{i_5}) < 1000$ ($n \ge 4.43$). Thus, when $n \ge 5$, we have

$$Kf(G_{t}) < Kf(G_{t}) < Kf(G_{t}) < Kf(G_{t})$$

In general, if the shortest length of three internally paths in Θ_n^t is one, we denote this shortest path by e_{13} , then by Lemma 1.6 we get

$$Kf(G') = Kf(G) - \frac{n \sum_{k=1}^{n} [\Omega(i,k) - \Omega(j,k)]^2 - [\sum_{k=1}^{n} \Omega(i,k) - \sum_{k=1}^{n} \Omega(j,k)]^2}{4[1 + \Omega(i,j)]}$$

and $\Omega(1,3) = 2(t-2)/t$. And by Lemma 1.5 we have $Kf(G) = (t^3 - t)/12 + (n-t)(t^2 + 11)/6$. Also, if k=1 then $[\Omega(1,1) - \Omega(3,1)]^2 = 4(t-2)^2/t^2$; and if k=2 then $[\Omega(1,2) - \Omega(3,2)]^2 = 0$; and if k=3 then $[\Omega(1,3) - \Omega(3,3)]^2 = 4(t-2)^2/t^2$; and if 4≤k≤t then $[\Omega(1,k) - \Omega(3,k)]^2 = [(k-1)(t-k+1)/t - (k-3)(t-k+3)/t]^2 = (2t-4k+8)^2/t^2$; and if t+1≤k≤n then

$$\sum_{k=i+1}^{n} [\Omega(1,k) - \Omega(3,k)]^2 = (n-t)[\Omega(1,3)]^2 = 4(n-t)(t-2)^2 / t^2$$

Since $[\sum_{k=1}^{n} \Omega(1,k) - \sum_{k=1}^{n} \Omega(3,k)]^2 = \frac{4(n-t)^2(t-2)^2}{t^2}$. Thus,
 $Kf(G') = \frac{-3t^4 + (6n+16)t^3 - (24n+117)t^2 + (126n+140)t - 144n}{12(3t-4)}$

and the derivative of Kf(G) about t is

$$\frac{-27t^4 + 144t^3 - 543t^2 + 936t - 560 + n(36t^3 - 144t^2 + 192t - 72)}{12(3t - 4)^2}$$

We note that the denominator of above fraction is a positive number, and when t ≥ 4 we have $36t^3 - 144t^2 + 192t - 72 = 12t(3t^2 - 12t + 16) - 72 > 0$. Since t $\leq n$. Then

$$-27t^{4} + 144t^{3} - 543t^{2} + 936t - 560 + n(36t^{3} - 144t^{2} + 192t - 72)$$

$$\geq -27t^{4} + 144t^{3} - 543t^{2} + 936t - 560 + t(36t^{3} - 144t^{2} + 192t - 72)$$

$$= 9t^{2}(t^{2} - 39) + 864t - 560$$

If $t \ge 5$ then $9t^2(t^2 - 39) + 864t - 560 > 0$, thus Kf(G') is increasing with the increase of t. If t=4 then $9t^2(t^2 - 39) + 864t - 560 < 0$, by comparing G_{i_1} and G_{i_2} we know that $Kf(G_{i_2}) > Kf(G_{i_1})$. Therefore, if the shortest length of three internally paths in Θ_n^t is one, then the minimal Kirchhoff index is 15n/4 - 11 and the corresponding graph is $\Theta_{n,n-4}$ (as shown in Fig.2 (9)).

3. Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 11551003) and the Qinghai Natural Science Foundation of China (Grant Nos. 2015-ZJ-911)

4. References

- [1] D. J. Klein, M. Randic, Resistance distance, J. Math. Chem. 1993, 12: 81-95.
- [2] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 1947, 69: 17-20.

- [3] Y. J. Yang and D. J. Klein, A recursion formula for resistance distance and its applications, *Discrete Appl. Math.* 2013, **161**: 2702-2715.
- [4] S. B. Chen, Q. Chen, X. Cai and Z. J. Guo, Maximal Degree Resistance Distance of Unicycle Graphs, MATCH Commun. Math. Comput. Chem. 2016, 75: 157-168.
- [5] S. B. Huang, J. Zhou, C. J. Bu, Some Results on Kirchhoff Index and Degree-Kirchhoff Index, MATCH Commun. Math. Comput. Chem. 2016, 75: 207-222.
- [6] M. Bianchi, A. Cornaro, J. L. Palacios, J. M. Renom and A. Torriero, Revisiting Bounds for the Multiplicative Degree-Kirchhoff Index, *MATCH Commun. Math. Comput. Chem.* 2016, 75: 227-231.
- [7] H. P. Zhang and Y. J. Yang, Resistance distance and Kirchhoff index in circulate graphs, *Int. J. Quantum Chem.* 2007, 107: 330-339.
- [8] H. P. Zhang, Y. J. Yang and C. W. Li, Kirchhoff index of composite graphs, *Discrete Appl. Math.* 2009, 157: 2918-2927.
- [9] R. B. Bapat and S. Gupta, Resistance distance on wheels and fans, Indian J. Pure Appl. Math. 2010, 41: 1-13.
- [10] X. Gao, Y. Luo and W. Liu, Resistance distances and the Kirchhoff index in Cayley graphs, *Discrete Appl. Math.* 2011,**159**: 2050-2057.
- [11] H. P. Zhang, Y. J. Yang, Kirchhoff Index of Linear Hexagonal Chains, International Journal of Quantum Chemistry, 2008, 108: 503-512.
- [12] X. Y. Jiang, The Kirchhoff Index extreme of the bicycle graphs, The master's degree thesis, 2008.
- [13] R. C. Entringer, D. E. Jackson and D. A. Snyder, Distance in graphs, Czechoslovak Math. J. 1976, 26: 283-296.
- [14] I. Lukovits, S. Nikolic, N. Trinajstic, Resistance distance in regular graphs, Int. J. Quantum Chem. 1999, 71: 217-225.
- [15] D. J. Klein, Lukovits and I. Gutman, On the definition of the hyper-wiener index for cycle containing structures, J. Chem. Inf. Comput. Sci. 1995, 35: 50-52.