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Abstract. The elliptic curve discrete logarithm problem(ECDLP) is the basis for the security of elliptic 
curve cryptography. Up to now, there is no subexponential algorithm for ECDLP. Only certain classes of 
weak curves exist whose standard ECDLP can be reduced to sample problems, like supersingular curves, 
anomalous curves etc. Elliptic surfaces are algebraic surfaces containing a pencil of elliptic curves (also 
means fibers). In order to reduce ordinary curves to weak curves using connections among these fibers, we 
define the ECDLP-equivalence of specialized-reduced points in the sense of the same section to elliptic 
surfaces (hereafter shortened as ECDLP-equivalence). We make a discovery that the ECDLP-equivalence is 
only related to the order of specialized-reduced points, and present an algorithm for constructing 
supersingular curves ECDLP-equivalent to ordinary curves via elliptic surfaces. In the end, we illustrate a 
256-bit example.  
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1. Introduction  

The hardness of the elliptic curve discrete logarithm problem(ECDLP) is crucial to the security of elliptic 
curve cryptography. Elliptic curves suitable for cryptographic application are defined over binary or prime 
fields. Let �̃� be an elliptic curve over 𝔽𝑝 (𝑝 is a prime) and points �̃�, �̃�, the ECDLP is to find the integer 𝑚 
satisfying �̃� = 𝑚�̃�. Elliptic surfaces are considered as one-parameter algebraic families of elliptic curves 
over function fields [2]. We aim at lifting ordinary curves to an elliptic surface over ℚ. If the connections 
among the fibers exist, the designers are very likely to know more information about Elliptic Curve 
Cryptography, then the security of the whole system may be compromised.  

Index Calculus, a lifting algorithm, can be used to solve the discrete logarithm problem (DLP) over finite 
fields in subexponential time. But two main approaches via lifting, Index Calculus and Xedni Calculus, 
cannot be efficient for the elliptic curves [3-6,9]. In order to find certainly linear dependence, the rank of the 
lifted curve 𝐸/ℚ should be lower than the number of lifted points, so it is not difficult to find the relation in 
𝐸(ℚ). Two points must be linearly dependent in the rank one case. Then ECDLP is equivalent to finding a 
good lifting. Using the good lifting and the relation of the lifted points, one can solve ECDLP for �̃�/𝔽𝑝. 

In [10-11], the authors proposed efficient algorithms to find dependence relation if they could lift two 
points to an elliptic curve over ℚ with rank one. Earlier similar work of [7] hoped to look for appropriate lifts 
among the family of curves over ℚ. In William George's PhD thesis [8], the equivalence between rank one 
elliptic surfaces lifting problem and the ECDLP has been investigated in depth. 

In this paper, we implement the algorithm to solve ECDLP assuming that the rank one lifting problem of 
the elliptic curves over ℚ(𝑡)  is solvable. Then we find a proposition that the ECDLP-equivalence of 
specialized-reduced points is only related to the order of these points. So we can make weak curves ECDLP-
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equivalent to ordinary curves by specialization-reduction maps. The rest of paper is organized as follows. We 
briefly describe the basic backgrounds in Section 2. After an example of rank one lifting, the details of 
ECDLP-equivalence and main proposition can be seen in Section 3 and the corresponding construction 
algorithm in Section 4. Then we cite an instance of constructing a 256-bit supersingular curve with the 
embedding degree 2, whose subgroup is ECDLP-equivalent to a 256-bit ordinary curve via the elliptic 
surface 𝑦2 = 𝑥3 + 𝑏(𝑡). In the end the conclusion is drawn and the future research direction proposed. 

2. Preliminary 

2.1. Elliptic surfaces 

From [1,2], we can see that an elliptic surface has a proper connected morphism to an algebraic curve, 
almost all of whose fibers are elliptic curves. 

Definition 1. Let 𝐶 be a smooth projective curve. An elliptic surface ℰ over 𝐶 is a smooth projective 
surface with an elliptic fibration over 𝐶, i.e. a surjective morphism 

𝜋: ℰ ⟶ 𝐶 
such that 

 For all but finitely many points 𝑡 ∈ 𝐶(�̅�), the fiber 
ℰ𝑡: 𝜋

−1(𝑡) 
is a non-singular curve of genus 1; 
 No fiber contains a curve of self-intersection number -1; 
 Exists a section to 𝜋, namely a morphism 

σ0: 𝐶 ⟶ ℰ 
such that 𝜋 ∘ σ0 = 𝑖𝑑𝐶, where σ0 is called zero section. 

The Mordell-Weil Theorem for function fields tells that the Mordell-Weil group 𝐸(ℚ(𝑡)) is a finitely 
generated abelian group, with the form 

𝐸(ℚ(𝑡)) ≅ 𝐸(ℚ(𝑡))𝑡𝑜𝑟𝑠 × ℤ
𝑟, 

where the torsion subgroup 𝐸(ℚ(𝑡))𝑡𝑜𝑟𝑠 is finite and the nonnegative integer 𝑟 is called the rank of 𝐸. 
Theorem 1 (Silverman's Specialization Theorem[1]). Let 𝑘 be a number field, and 𝐶/𝑘 be a curve, and let 

𝐸 be an elliptic curve defined over the function field 𝑘(𝐶). Assume that 𝐸 is nonconstant, i.e., 𝑗(𝐸) ∉ 𝑘. 
Then the specialization map of 𝐸 at 𝑡 

𝜎𝑡: 𝐸(ℚ(𝑡)) → 𝐸𝑡(ℚ) 
is well-defined and injective(called a specialization) for all but finitely many points 𝑡 ∈ 𝐶(𝑘).  

More generally, the set of points 𝑡 ∈ 𝐶(�̅�) for which 𝜎𝑡 is not injective is a set of bounded height (these 
𝐸𝑡 's are also called exceptional specializations). Those 𝐸𝑡 's with discriminant 𝛥 ≠ 0  are called good 
specializations, and others degenerate specializations. 

2.2. Lifting Problem of Elliptic Surfaces 

Definition 2. Let �̃�/𝔽𝑝 be an elliptic curve over 𝔽𝑝 and �̃�1, �̃�2,⋯ , �̃�𝑙 ∈ �̃�(𝔽𝑝) be the points of �̃�(𝔽𝑝). 
The lifting problem for (�̃�, �̃�1,⋯ , �̃�𝑙) is to find (𝐸, 𝑃1,⋯ , 𝑃𝑙) which is defined as follows: 

The elliptic curve to E/ℚ(t) is the lifted curve of Ẽ/𝔽p: Ẽ denotes the good reduction modulo 𝑝 of 𝐸, i.e., 
𝐸 ≡ �̃� 𝑚𝑜𝑑 𝑝; 

 𝑃1, ⋯ , 𝑃𝑙 ∈ 𝐸(ℚ(𝑡)) are the lifted points of �̃�𝑖 's: i.e., 𝑃𝑖 ≡ �̃�𝑖 𝑚𝑜𝑑 𝑝, 1 ≤ 𝑖 ≤ 𝑙.    
Furthermore, if 𝑃1,⋯ , 𝑃𝑙 are linearly dependent, we call 𝑃1,⋯ , 𝑃𝑙 the good lifting. 
Remark: If the rank 𝑟 of 𝐸(ℚ(𝑡)) is strictly less than 𝑙, the linear dependence of 𝑃1, ⋯ , 𝑃𝑙   must be 

established. In this case we have a good lifting. So, without loss of generality, we can assume that the lifted 
points 𝑃1,⋯ , 𝑃𝑟 are the generators of 𝐸(ℚ(𝑡))/𝐸(ℚ(𝑡))𝑡𝑜𝑟𝑠. 

3. ECDLP-Equivalence by Specialization-Reduction Maps 

3.1. ECDLP algorithm after finding a rank one lifting 
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Theorem 2. Let 𝐸 ℚ(𝑡)⁄  be a rank one elliptic curve, and 𝑆, 𝑇 ∈ 𝐸(ℚ(𝑡)). Suppose there exist 𝑘1, 𝑘2 ∈

ℤ such that  ℎ̂(𝑇)
ℎ̂(𝑆)

= (
𝑘2

𝑘1
)
2
 and (𝑘1, 𝑘2) = 1, if  𝑘1, 𝑘2 are both positive/negative, 𝑘2𝑆 − 𝑘1𝑇 ∈ 𝐸(ℚ(𝑡))𝑡𝑜𝑟𝑠, 

else then 𝑘2𝑆 + 𝑘1𝑇 ∈ 𝐸(ℚ(𝑡))𝑡𝑜𝑟𝑠. 

Proof: Let 𝑃0  be the generator of 𝐸 , then we can find 𝑙1, 𝑙2 ∈ ℤ  and 𝑆′, 𝑇′ ∈ 𝐸(ℚ(𝑡))𝑡𝑜𝑟𝑠  such that 
𝑆 = 𝑙1𝑃0 + 𝑆′, 𝑇 = 𝑙2𝑃0 + 𝑇′. So 

ℎ̂(𝑆) = 𝑙1
2ℎ̂(𝑃0) and  ℎ̂(𝑇) = 𝑙22ℎ̂(𝑃0), 

ℎ̂(𝑇)

ℎ̂(𝑆)
 is a rational square. 

Suppose we find 𝑘1, 𝑘2 satisfied above condition, then  𝑘2
𝑘1
=
𝑙2

𝑙1
 or 𝑘2

𝑘1
= −

𝑙2

𝑙1
. If  𝑘2

𝑘1
=
𝑙2

𝑙1
, then let  𝑙2 = 𝑑𝑘2, 

𝑙1 = 𝑑𝑘1, so 𝑆 = 𝑑𝑘1𝑃0 + 𝑆′, 𝑇 = 𝑑𝑘2𝑃0 + 𝑇′, hence 𝑘2𝑆 − 𝑘1𝑇 = 𝑘2𝑆′ − 𝑘1𝑇′ ∈ 𝐸(ℚ(𝑡))𝑡𝑜𝑟𝑠.  

Similarly, if 𝑘2
𝑘1
= −

𝑙2

𝑙1
, then 

𝑘2𝑆′ + 𝑘1𝑇′ ∈ 𝐸(ℚ(𝑡))𝑡𝑜𝑟𝑠. 
We can get the following Algorithm 1 assuming finding a rank one lifting elliptic surface: 

Algorithm 1. ECDLP Algorithm after Finding a Rank One Lifting 

Input：rank one good lifting (𝐸/ℚ(𝑡), 𝑆, 𝑇) of  (�̃�/𝔽𝑝, �̃�, �̃�); 
Output：𝑚 such that �̃� = 𝑚�̃�. 

1. Find 𝑘1, 𝑘2 ∈ ℤ such that ℎ̂(𝑇)
ℎ̂(𝑆)

= (
𝑘2

𝑘1
)
2
 and (𝑘1, 𝑘2) = 1; 

2. If 𝑘2𝑆 − 𝑘1𝑇 ∈ 𝐸(ℚ(t))𝑡𝑜𝑟𝑠, then 

𝑚 ≡
𝑘2 𝑚𝑜𝑑 𝑝

𝑘1 𝑚𝑜𝑑 𝑝
 𝑚𝑜𝑑(𝑜𝑟𝑑(�̃�)), 

3. else if 𝑘2𝑆 + 𝑘1𝑇 ∈ 𝐸(ℚ(t))𝑡𝑜𝑟𝑠, then 

𝑚 ≡ −
𝑘2 𝑚𝑜𝑑 𝑝

𝑘1 𝑚𝑜𝑑 𝑝
 𝑚𝑜𝑑(𝑜𝑟𝑑(�̃�)). 

3.2. Main Proposition 

According to Algorithm 1, we can draw a conclusion that the value of ECDLP on the fibers of an elliptic 
surface is only related to the order of the point �̃� in the period of mod 𝑝. So we can give our main proposition 
about the ECDLP-equivalence. 

Definition 3. Let 𝜋: ℰ ⟶ 𝐶 be an elliptic surface, and let 𝐸/𝐾 be the associated elliptic curve, 𝐾 = 𝑘(𝐶) 
is the function field of 𝐶. Let 𝜎𝑡 be the specialization map, and 𝜑𝑝 be the good reduction map: 

𝐸/𝐾
𝜎𝑡
→𝐸𝑡

𝜑𝑝
→ �̃�𝑡

𝑃 ⟼ 𝑃𝑡 ↦ �̃�𝑡
, 

then the composite mapping 𝜏 = 𝜎𝑡 ∘ 𝜑𝑝  is called the specialization-reduction map from 𝐸/𝐾 to �̃�𝑡 , �̃�𝑡 =
𝜏(𝐸) = 𝜑𝑝(𝜎𝑡(𝐸)) are called the specialized-reduced curves, �̃�𝑡 = 𝜏(𝑃) = 𝜑𝑝(𝜎𝑡(𝑃)) called the specialized-
reduced points. 

Remark: The two specialized-reduced curves can be defined over two different base fields. 
Definition 4. Using the specialization-reduction map 𝜏, We call two specialized-reduced points �̃�𝑡1 , �̃�′𝑡2 

are section-equivalent( in the sense of the same section 𝜎𝑃) if and only if 𝑜𝑟𝑑(�̃�𝑡1) = 𝑜𝑟𝑑(�̃�′𝑡2) shortened as 
section-equivalent, denoted by �̃�𝑡1 ∼ �̃�′𝑡2. 

In particularly, if the two reduction maps 𝜑𝑝 are the same, we call two specialized-reduced points �̃�𝑡1 , �̃�𝑡2 
are section-equivalent over the same base fields, denoted by �̃�𝑡1 ∼ �̃�𝑡2. 

Proposition 1. Using the specialization-reduction map 𝜏, in the period of the reduction map, if the 
specialized-reduced points are ECDLP-equivalent, the specialized-reduced points have the same value of 
ECDLP. 

The proof of this proposition is obvious, and is independent of the sequence of composite mapping. 
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According to Proposition 1, we can construct weak curves which are ECDLP-equivalent to the ordinary 
curves, such as supersingular curves, anomalous curves, and so on. 

4. Constructing Weak Curves 

4.1. Algorithm to construct supersingular curves 

We know that the Algorithm 3.3 [14] is about the construction of supersingular elliptic curve. So, an 
algorithm to construct supersingular curves whose subgroups are section-equivalent to ordinary curves via 
elliptic surfaces can be stated as follows. 

Algorithm 2. Algorithm for constructing supersingular curves 

Input：an elliptic curve 𝐸: 𝑦2 = 𝑥3 + 𝑏(𝑡) over function filed ℚ(𝑡), along with a point 
𝑃 ∈ 𝐸(ℚ(𝑡)); 
Output：a supersingular specialized-reduced curve �̃�′𝑡2/𝔽𝑝2, whose subgroup is 

section-equivalent to the ordinary specialized-reduced  curve �̃�𝑡1/𝔽𝑝1. 

1. Find a prime 𝑝 ≡ 3(𝑚𝑜𝑑4), 𝑝 ≢ 5(𝑚𝑜𝑑6) and a 𝑡1, such that �̃�𝑡1/𝔽𝑝1is an ordinary 
specializedreduced curve, with  #(�̃�𝑡1(𝔽𝑝1)) = 𝑜𝑟𝑑(�̃�𝑡1) = 𝑛; 

2. Find 𝑢 such that 𝑢 ∗ 𝑛 − 1 is a prime, and 𝑢 ∗ 𝑛 − 1 ≡ 5 (mod6),  then let 𝑝2 = 𝑢 ∗
𝑛 − 1; 

3. Find a specialization 𝑡2, such that �̃�′𝑡2/𝔽𝑝2  is a supersingular specialized-

reduced curve, with#(�̃�′𝑡2)/𝑜𝑟𝑑(�̃�′𝑡2) = 𝑢, i.e., 𝑜𝑟𝑑(�̃�𝑡1) = 𝑜𝑟𝑑(�̃�′𝑡2) = 𝑛; 
4. Return �̃�′𝑡2/𝔽𝑝2. 

4.2. A constructing example 

So, we can construct weak curves via the elliptic surface 
𝐸: 𝑦2 = 𝑥3 + (2𝑡3 + 1) 

with 𝑃 = (𝑡2, 𝑡3 + 1) ∈ 𝐸(ℚ(𝑡)) (implemented in Magma). 
Let 𝑆, 𝑇 ∈ 𝐸 be two points. Without losing generality, we choose the simple points representation, such 

as 
𝑆 = 5 ∗ 𝑃 and 𝑇 = 13 ∗ 𝑃, 

�̃�𝑡1 , �̃�′𝑡2 , �̃�′𝑡3 are specialized-reduced curves, and �̃�𝑡1 , �̃�′𝑡2 , �̃�′𝑡3, �̃�𝑡1 , �̃�′𝑡2 , �̃�′𝑡3, �̃�𝑡1 , �̃�′𝑡2 , �̃�′𝑡3  are specialized-
reduced points. Notice �̃�𝑡1 , �̃�′𝑡2 , �̃�′𝑡3 are all located in the same section 𝜎𝑃. Correspondingly, �̃�𝑡1 , �̃�′𝑡2 , �̃�′𝑡3are 
all located in 𝜎𝑆, and �̃�𝑡1 , �̃�′𝑡2 , �̃�′𝑡3 in 𝜎𝑇, where 
 𝑡1 = 2, 

    𝑝1 = 57896044618658097711785492504343953926634992332820282019728792003956564 
 820063, 

        �̃�𝑡1/𝔽𝑝1defined by  
𝑦2 = 𝑥3 + 17 

is a 256-bit ordinary curve, and �̃�𝑡1 = 𝜏(𝑃) = 𝜑𝑝1 (𝜎𝑡1(𝑃)), 
        𝑜𝑟𝑑(�̃�𝑡1) = 578960446186580977117854925043439539263142609842799801259135885294 

  94218755601, 
       Computer 𝑚 ≡ 13

5
 𝑚𝑜𝑑 (𝑜𝑟𝑑(�̃�𝑡1)) = 2315841784746323908471419700173758157052570439 

                                                   3711992050365435411797687502243, 
        So �̃�𝑡1 = 𝑚 ∗ �̃�𝑡1. 
 𝑡2 = 6, 

    𝑝2 = 11579208923731619542357098500868790785262852196855996025182717705898843 
  7511201,      

�̃�′𝑡2/𝔽𝑝2 defined by  
𝑦2 = 𝑥3 + 433 

is a 256-bit supersingular curve (with the embedding degree 2), and �̃�′𝑡2 = 𝜏(𝑃) = 𝜑𝑝2 (𝜎𝑡2(𝑃)), 
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        𝑜𝑟𝑑(�̃�′𝑡2) = 𝑜𝑟𝑑(�̃�𝑡1), 
        Verify �̃�′𝑡2 = 𝑚 ∗ �̃�′𝑡2, i.e. �̃�′𝑡2 ∼ �̃�𝑡1. 
 𝑡3 = 1, 

𝑝3 = 57896044618658097711785492504343953926634992332820282019728792003956564 
     820109, 

        �̃�′𝑡3/𝔽𝑝3 defined by 
𝑦2 = 𝑥3 + 3 

is a 256-bit supersingular curve (with the embedding degree 2), and �̃�′𝑡3 = 𝜏(𝑃) = 𝜑𝑝3 (𝜎𝑡3(𝑃)), 
        𝑜𝑟𝑑(�̃�′𝑡3) ≠ 𝑜𝑟𝑑(�̃�𝑡1),   
        Verify �̃�′𝑡3 ≠ 𝑚 ∗ �̃�′𝑡3, i.e. �̃�′𝑡3 ≁ �̃�𝑡1. 

To summarize, ∵ 𝑜𝑟𝑑(�̃�′𝑡2) = 𝑜𝑟𝑑(�̃�𝑡1), ∴ �̃�′𝑡2 ∼ �̃�𝑡1, 
on the other hand,   ∵ 𝑜𝑟𝑑(�̃�′𝑡3) ≠ 𝑜𝑟𝑑(�̃�𝑡1), ∴ �̃�′𝑡3 ≁ �̃�𝑡1. 

5. Conclusion 

In this paper, we draw a conclusion that the ECDLP-equivalence (in the sense of the same section to 
elliptic surfaces) of specialized-reduced points is only related to the order of these points. To put theories to 
the test, we give an example of constructing a 256-bit supersingular curves with the embedding degree 2, 
whose subgroup is ECDLP-equivalent to a 256-bit ordinary curve via the elliptic surface 𝑦2 = 𝑥3 + 𝑏(𝑡).  
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