
Precision Adjustment Strategies Based on Constraint Simplification in

Polyhedra Abstract Domain

Xiang Chen

, Min Zhou, and Ming Gu

Tsinghua University, Beijing, China

Abstract. Some precision adjustment strategies based on constraint simplification are introduced to find a

trade-off between precision and its cost in program analysis. In program analysis built on numerical abstract

domains, a constraint (such as Linear Inequation in Polyhedra abstract domain) implies the relationships

between program variables. The main idea of precision adjustment strategies in this paper is simplifying the

constraints in some pivotal program locations before these constraints are fed to abstract transfer functions.

The strategy at Function Start Location(FSL) replaces expressions with constraints related to their ranges.

The strategy at Loop Start Location(LSL) simplifies constraints' coefficients through combining several

analogous constraints to a typical constraint. The strategy at Ordinary Location(OL) decreases the quantities

of variables in constraints by replacing these variables with their ranges. Our framework is implemented on

the top of Apron which is dependent on Convex Polyhedra and Linear Equalities library (POLKA).

According to a series of experiments on different programs, we demonstrate that the application of precision

adjustment strategies can improve the efficiency of program analysis.

Keywords: program analysis, abstract domain, abstract interpretation, precision adjustment

1. Introduction

Nowadays, computer programs have been applied in various fields. To ensure the programs meet

people's expectations and no abnormal state is in running programs, the technologies about program analysis

and verification have been introduced. Abstract Interpretation [1] is a program analysis method to simulate

the possible running program states through semantic abstraction.

Numerical Abstract Domain plays a key role in numerical program analysis based on abstract

interpretation. An abstract numerical domain can describe the ranges of different numerical variables and the

relationships between these variables. A simple and intuitive Interval abstract domain (𝑋𝑖 ∈ [𝑎𝑖, 𝑏𝑖]) [2] can

track the upper and lower bounds of each numerical variable and analyze codes with very high efficiency.

Octagon abstract domain (±𝑥𝑖 ± 𝑥𝑗 ≤ 𝛽) [3] is able to express specific constraints between two variables.

Polyhedral abstract domain (∑ 𝑖 𝛼𝑖𝑋𝑖 ≤ 𝛽) [4] is used to derive linear relationships between any number of

variables.

In the past decades, Polyhedra abstract domain is widely applied [5, 6]. But the application of Polyhedra

has been limited by its double-description [7]. The solutions aiming to find trade-offs between precision and

efficiency can be divided into two categories: on the one hand, limiting the ability to express relationships

between program variables, and on the other hand, improving some abstract domain operators.

In the case of restrictive expression, many weakly relationship abstract domains have been introduced,

such as Octagons [3], octahedron (∑ 𝑖 𝛼𝑖𝑋𝑖 ≤ 𝛽, 𝛼𝑖 ∈ {−1,0,1}) [8], Pentagons (𝑥 ≤ 𝑦 ∧ 𝑎 ≤ 𝑥 ≤ 𝑏) [9] and

so on. These abstract domains can make program analysis quicker, but some relational information among

program variables will be discarded. What's more, the method adding restrictions on existing abstract

 Corresponding author. Tel.: + 15201614913.

 E-mail address: kuailezhish@gmail.com.

195

ISBN 978-981-11-3671-9

Proceedings of 2017 the 7th International Workshop on Computer Science and Engineering

(WCSE 2017)

Beijing, 25-27 June, 2017, pp. 19 5 -203

admin
打字机文本
doi: 10.18178/wcse.2017.06.034

domains also perform well [10]. [11] puts up two methods called "linearization" and "symbolic constant

propagation" to simplify numerical expressions.

Some techniques related to abstract domain operators are used to reduce the analysis time, such as

making the threshold for the maximum amount of the constraints [12], selecting appropriate abstract domains

for different program variables [13] have been illustrated to foster the speed of program analysis.

This paper aims to make the complexity of program analysis lower through simplifying the constraints in

Polyhedra abstract domain. According to a good code style ''Declare Variables At First Use'' [14], we divide

program variables and program locations into different categories and introduce some methods to simplify

constraints according to these variables and locations. When there are some loops and functions in programs

along with several symbolic variables, the precision adjustment strategies produce a good influence on

improving the efficiency of program analysis.

This paper is organized as follows: First, we give the preliminaries in Sect. 2. Then in Sect. 3, the

precision adjustment strategies are presented. In Sect. 4, some experiments are established to give an

evaluation to the methods in this paper. The last Sect. 5 followed by conclusions and an outlook on future

research.

2. Preliminaries

We briefly recall the classical Abstract Interpretation framework [1] which is designed to compute

numerical invariants automatically.

2.1. Syntax of the Language

A simple imperative programming language is used to analyze programs. All the variables are assumed

to be integers in 𝑍. Suppose that the quantity of variables is finite and 𝑉 = {𝑣1,⋯ , 𝑣𝑛} represents all the

variables.

Table 1 is the syntax of the simple language. And the programming language will be used in examples is

C programming language.

Table 1: Syntax of the simple language.

𝑣𝑎𝑙 : : = 𝑐𝑜𝑛𝑠𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
 | 𝑣 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

𝑒𝑥𝑝𝑟 : : = 𝑣𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
 | ! 𝑒𝑥𝑝𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑜𝑛
 | 𝑒𝑥𝑝𝑟 ∘ 𝑒𝑥𝑝𝑟 ∘∈ {+,−,×,/}

𝑜𝑝 : : = 𝑣 = 𝑒𝑥𝑝𝑟 𝑣 ∈ 𝑉 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
 | 𝑒𝑥𝑝𝑟 ⊳⊲ 0 ⊳⊲∈ {=,≠,<,≤,>,≥} 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

2.2. Program Analysis

A program is represented by a control-flow-automaton (CFA) [15], which consists of a set 𝐿 meaning all

the control locations, an initial location 𝑙0 and a transfer relation set 𝐺 ⊆ 𝐿 × 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 × 𝐿.

2.3. Abstract Domain

Every abstract domain contains two components: domain states and domain operators. The process of

program analysis can be regarded as the transformation between domain states by means of domain operators.

Domain states consist of concrete states set 𝐸 and abstract states set 𝑆. Any abstract state 𝑠 ∈ 𝑆 can be

regarded as a set of concrete states {𝑒1, 𝑒2, . . . , 𝑒𝑖}, ∀𝑒𝑖 ∈ 𝐸. All the abstract states should be the elements of a

semi-lattice so that different domain states can be compared and domain operators between states can be

carried out.

Domain operators are operators carried on domain states. There are several types of domain operators in

abstract domain.

196

 Preorder ⊑⊆ 𝑆 × 𝑆. This operator is used to decide whether one abstract state subsumes another

abstract state (partial order).

 Join Operator ⨆: 𝑆 × 𝑆 → 𝑆. This operator aims to combine two abstract states into a new abstract

state and all the concrete states represented in two abstract states will be represented in the new

abstract state.

 Transfer Operator ⇝⊆ 𝑆 × 𝐺 × 𝑆. This operator ⇝assigns each abstract state 𝑠 a list of new abstract

successor states, which forms as 𝑠 ⇝ 𝑠′ if (𝑠, 𝑔, 𝑠) ∈⇝. Every transfer operator is associated with a

certain edge 𝑔 ∈ 𝐺 which connects different program locations. The type of edge 𝑔 varies for

different semantics. These edge types include assignment, assumption (make an assumption true or

false), function call statement, return statement and so on.

2.4. Constraint

Every numerical abstract domain has its representations of constraints which illustrate the relationships

between program variables. Constraints can be unary, binary or multiary, linear or nonlinear and equation or

inequation. There are several typical constraints which will be used in the following part of this paper.

 Interval Expression. The expression is ±𝑥𝑖 ≤ 𝛽(𝛽 ∈ ℚ) which can only make restrictions in upper

bound and lower bounds of variables.

 Linear Inequation. The expression is ∑ 𝑖 𝛼𝑖𝑋𝑖 ≤ 𝛽(𝛼𝑖 , 𝛽 ∈ ℚ) . From the expression of the view,

Linear Inequations includes all the Interval Expressions.

 Interval Linear Inequation. The expression is ∑ 𝑖 [𝛼𝑖, 𝛽𝑖]𝑋𝑖 = 𝛽(𝛼𝑖, 𝛽𝑖 ∈ ℚ, 𝛼𝑖 ≤ 𝛽𝑖). This expression

is used in the process of replacing variables with their ranges. This constraint expression comes from

Interval Polyhedra abstract domain [16].

2.5. Invariant

Let 𝜋 represents a set of constraints. If all the constraints in 𝜋 can be meet in location 𝑙 ∈ 𝐿, we call 𝜋 is

an invariant at 𝑙.

2.6. Precision

Every abstract domain can present different levels of abstraction (fine-grained or coarse-grained). The

level of abstraction of current abstract state in chosen abstract domain is determined by the abstraction

precision [17].

Fig. 1: Inclusive Relationship among important concepts.

In general, the higher the level of abstraction (coarse-grained), the more efficient the analysis will be.

However, high-level abstraction will bring us an overwhelming number of false alarms. When the level of

abstraction is lower (fine-grained), the abstract state is much closer to the concrete program state and the

reported alarms will be more precise. But the analysis will be costlier and can’t be scale to large programs.

In this paper, the abstract precision of program state can be represented by a set of related constraints. A

set of constraints 𝜋 ∈ Π (Π is the set of all the sets of constraints) records all the constraints associated to the

abstract state 𝑠.

197

To sum up, the inclusive relationship of abstract states, program locations, constraints and variables can

be shown in Fig.1. In Fig. 1, every abstract state 𝑠 has a program location 𝑙 and a set of constraints 𝜋. 𝜋

contains a list of constraints and every constraint 𝑐𝑖 is a linear inequation.

3. Precision Adjustment

In this section, a sample program with location labels is given firstly. Then, some new terms will be

introduced to pave the way for illustrating precision adjustment strategies. Finally, formalized description

about precision adjustment strategies will be given.

Listing 1:

int total = 100; (L1)

void process (int x, int y, int z) { (L8)

// some calculations

(L9)

}

int main() { (L0)

for (int i = 0; (L2) i <= total / 5; (L3) i++ (L14)) {

for (int j = 0; (L4) j <= total / 3; (L5) j++ (L12)) {

int k = total - i - j; (L6)

if (k % 3 == 0 && i * 5 + j * 3 + k / 3 == total) { (L7)

process(i, j, k); (L10)

} (L11)

} (L13)

} (L15)

return 0; (L16)

}

Listing 1 is an example with location labels. The program is a solution to solve Chinese classic problem

named "One hundred yuan to buy one hundred chicken problem". Every 𝐿𝑖 in Listing 1 is a location label

which indicates the control location and will be called program location in the following part of this paper.

3.1. Program Location

Control locations have been mentioned in section 2.2. There are several program locations.

Function Start Location (FSL) Function Start Location means the first control location in the function.

At FSL, some parameters are passed from parent function. In Listing 1, 𝐿8 is a function start location of

function process.

Loop Start Location (LSL) Loop Start Location is the location in CFA which will be analyzed

periodically during loop analysis. What's more, LSL is the location that can be transferred to the outside of

the loop. In Listing 1, 𝐿2 and 𝐿4 are loop start locations in function main.

Ordinary Location (OL) All the program locations except FSL and LSL are called ordinary locations

including the beginning location and the ending location.

3.2. Variable Categories

In C or C-like programming language, variables include global variables and local variables. In this

paper, variables are put into several categories according to program locations where they are declared.

Global Variable: the global variables in this paper means the variables declared in ordinary location and

not in any independent function. In Listing 1, the variable 𝑡𝑜𝑡𝑎𝑙 is a global variable.

Function Start Variable: the variables defined at FSL are called function start variables. Their values are

determined by the arguments passed from upper functions. In Listing 1, the variables 𝑥, 𝑦 and 𝑧 in function

process are function start variables.

Ordinary Variable: ordinary variable is neither a global variable nor a function start variable. It is

declared in the body of function and stores some information about the loop depth in the current function.

Loop Depth (the depth of loop) Loop Depth means which level is the loop where the ordinary variable

declared. If the entry of function is zero layer loop, then the depth of new loop nested in another loop is equal

198

to the depth of its parent loop plus one.

In Listing 1, the variables 𝑖, 𝑗 and 𝑘 in function main are ordinary variables. Their loop depths are 0, 1, 2

respectively. What's more, the depths of all function start variables are 0.

3.3. Precision Adjustment Strategies

What the precision adjustment strategies aiming to is adjusting the constraints stored in abstract states

and making them simpler.

When a transfer 𝑠(𝑙, 𝜋)⇝ 𝑠′(𝑙′, 𝜋′) , 𝑙, 𝑙′ ∈ 𝐿 , 𝑠, 𝑠′ ∈ 𝑆 , 𝜋, 𝜋′ ∈ Π finished, the precision adjustment

𝜌:Π → Π will be carried out. The process of precision adjustment can be formalized as 𝑠′(𝑙′, 𝜋′)↠
𝑠′′(𝑙′, 𝜋′′), 𝑠′′ ∈ 𝑆, 𝜋′′ ∈ Π. Here, the parentheses in 𝑠(𝑙, 𝜋) means inclusion relation.

Some predicates are defined to express strategies clearly in the following analysis:

 𝑉𝑎𝑙(𝜋, 𝑣): return the range 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙([𝑙𝑜𝑤, ℎ𝑖𝑔ℎ]) of variable 𝑣 under the set of constraints 𝜋

 𝐶𝑜𝑛(𝑣, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙): return the constraint 𝑙𝑜𝑤 ≤ 𝑣 ≤ ℎ𝑖𝑔ℎ

 𝐷𝑒𝑝(𝑣): return the loop depth of 𝑣 in current function

Following are several strategies for precision adjustment 𝜌(𝜋′) = 𝜋′′:

Strategy 1 (At FSL) Firstly, 𝜋′′ = 𝜋. Then ∀𝑣 ∈ 𝑉, if 𝑣 is function start variable in current function,

then 𝜋′′ = 𝜋′′ + 𝐶𝑜𝑛(𝑣, 𝑉𝑎𝑙(𝜋′, 𝑣)).

Listing 2:

void bar (int x, int y) {

// euclidean algorithm

}

void foo (int x, int y) {

if (0 < x && x < 6 && 0 < y && y < 4) {

if (x + 2 * y > 7 && 3 * x + y < 16) {

bar(x, y);

 }

 }

}

In Listing 2, before function bar is called, 𝜋 = {0 < 𝑥𝑓𝑜𝑜 < 6,0 < 𝑦𝑓𝑜𝑜 < 4, 𝑥𝑓𝑜𝑜 + 2 ∗ 𝑦𝑓𝑜𝑜 > 7,3 ∗

𝑥𝑓𝑜𝑜 + 𝑦𝑓𝑜𝑜 < 16} . When finished calling function bar, 𝜋′ = {0 < 𝑥𝑓𝑜𝑜 < 6,0 < 𝑦𝑓𝑜𝑜 < 4, 𝑥𝑓𝑜𝑜 + 2 ∗

𝑦𝑓𝑜𝑜 > 7,3 ∗ 𝑥𝑓𝑜𝑜 + 𝑦𝑓𝑜𝑜 < 16, 𝑥𝑏𝑎𝑟 = 𝑥𝑓𝑜𝑜, 𝑦𝑏𝑎𝑟 = 𝑦𝑓𝑜𝑜}. After precision adjustment at function bar start

location, 𝜋′′ = {0 < 𝑥𝑓𝑜𝑜 < 6,0 < 𝑦𝑓𝑜𝑜 < 4, 𝑥𝑓𝑜𝑜 + 2 ∗ 𝑦𝑓𝑜𝑜 > 7,3 ∗ 𝑥𝑓𝑜𝑜 + 𝑦𝑓𝑜𝑜 < 16, 1 < 𝑥𝑏𝑎𝑟 < 5,1 <

𝑦𝑏𝑎𝑟 < 4}.

Strategy 2 (At LSL) In this section, we introduce two concepts Feature and Concatenation, then an

algorithm about adjustment strategy at loop start location will be given.

Feature ∀𝑐 ∈ 𝜋′, the 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 of 𝑐 is a set which stores some information about what the kind of 𝑐 (one

of {=,≠,<,≤,>,≥}) and the signs of every variable coefficients in 𝑐. Each sign can be one of {−1,0,1}

which means negative, zero and positive. For example, when 𝑉 = {𝑥, 𝑦, 𝑧} and a constraint 𝑐𝑐 is 2 ∗ 𝑥 − 3 ∗

𝑦 + 1 > 0, then the 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 of 𝑐𝑐 is {>, [1, −1,0]}. In the array, the coefficient of 𝑧 is 0 because 𝑧 is not in

𝑐𝑐.

Concatenation the 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 of a constraint is a linear expression which consists of all the

variables and their signs. 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 can be formalized as ∑ 𝑖 𝑠𝑖𝑔𝑛𝑖 ∗ 𝑋𝑖. Through the previous example,

we get the 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 of 𝑐𝑐 is 𝑥 − 𝑦.

The algorithm about adjustment strategy at LSL is illustrated in Fig. 2.

Listing 3:

int main() {

int x, y;

if (0 <= x && y <= 10) {

if (4 * y - x + 4 > 0 && 10 * y - x + 1 > 0 && y - 3 * x + 22 > 0 && 2 * y - 11 * x + 99 > 0) {

for (int i = 0; i < x + y; i++) {

int z = x * x - y * y;

199

}

 }

}

return 0;

}

Fig. 2: Precision adjustment algorithm at LSL.

In Listing 3, when the statement "int 𝑖 = 0;" has been executed, 𝜋′ = {0 ≤ 𝑥, 𝑦 ≤ 10,4 ∗ 𝑦 − 𝑥 + 4 >

0,10 ∗ 𝑦 − 𝑥 + 1 > 0, 𝑦 − 3 ∗ 𝑥 + 22 > 0,2 ∗ 𝑦 − 11 ∗ 𝑥 + 99 > 0, 𝑖 = 0}. The features of four constraints

are all {>, [−1,1,0]} and they are in same 𝐶𝑖 . A new concatenation 𝑒𝑥𝑝𝑟 generating from any constraint

𝑐 ∈ 𝐶𝑖 is −𝑥 + 𝑦. Then these four constrations is dropped and a new constraint 𝐶𝑜𝑛(𝑒𝑥𝑝𝑟, 𝑉𝑎𝑙(𝜋′, 𝑒𝑥𝑝𝑟)) is

added. After carrying out precision adjustment at loop start location, 𝜋′′ becomes to {0 ≤ 𝑥, 𝑦 ≤ 10,−𝑥 +

𝑦 + 6 ≥ 0, 𝑖 = 0}.

Strategy 3 (At OL) Let 𝑐 represents the constraint related to transfer edge 𝑔. If the type of edge 𝑔 is not

assumption, or the type of edge 𝑔 is assumption and the loop depths of all variables in 𝑐 are equivalent, then

𝜋′′ = 𝜋′, the adjustment is done. Otherwise there are several steps to express the strategy at OL.

At first step, let 𝑑 represent the maximum loop depth of variables in 𝑐. At second step, ∀𝑣 ∈ 𝑐, if 𝑣 is

Global Variable or 𝐷𝑒𝑝(𝑣) < 𝑑, replace these variables with their respective ranges 𝑉𝑎𝑙(𝜋′, 𝑣) in 𝑐 to get a

new constraint 𝑐′ (Interval coefficient is used in this constraint). At third step, adjusting the constraints 𝑐′ to

the one 𝑐′′ which Polyhedra abstract domain can express according to the operations from Interval Polyhedra

abstract domain [16]. Lastly 𝜋′′ = 𝜋 + 𝑐′′.

Listing 4:

int main () {

int x;

if (0 <= x && x <= 10) {

for (int i = 0; i < x; i++) {

int sum = 0;

for (int j = 0; j < x + i; j++) {

sum = sum + 1;

}

}

}

return 0;

}

In Listing 4, when the statement 𝑗 < 𝑥 + 𝑖; has been executed, the depths of variable 𝑥 and 𝑖 are 0, and

the depth of variable 𝑗 is 1. So, the ranges of 𝑥 and 𝑖 will be calculated and the constraint 𝑗 < 𝑥 + 𝑖 will be

simplified. When the program reaches its fixpoint, we can get the adjusted constraint −𝑗 + 18 >= 0 instead

of 𝑗 − 𝑥 − 𝑖 < 0.

200

4. Experiment Evaluation

All the experiments are performed on Ubuntu 15.04(64-bit) system with Intel Core i7-4790

CPU(3.60GHz). The analysis are implemented in CPAchecker [18] which is a framework and tool for formal

software verification, and program analysis of C programs.

4.1. Design

Numerical abstract domains are usually used to infer the relationships among numerical variables in

programs. So, all the experiments are designed to find the linear invariants. There are four stages of carrying

out program experiments: precision adjustment at FSL, precision adjustment at LSL, precision adjustment at

OL and precision adjustment in all previous locations (also called synthesized case).

4.2. Results

There are some aspects to judge the effects of experiments: time cost, memory cost, the number of

iterations to get invariants and complexity of codes (the numbers of variables, loops and functions). Table 2

shows the analysis results of 9 programs. The information shown about variables, loops and functions are

quantities. S(function), S(loop), S(ordinary) means adopting different precision adjustment strategies.

Table 2: Experiment Results

Program variables loops functions S(function) S(loop) S(ordinary) iterations Memory(average)
Analysis

time

prog1

prog1

8

8

1

1

2

2

√

100

50

38MB

38MB

72ms

35ms

prog2

prog2

8

8

1

1

2

2

√

--

54

--

35MB

--

35ms

prog3
prog3

4
4

1
1

1
1

√

122
122

37MB
36MB

97ms
83ms

prog4
prog4

5
5

3
3

1
1

√

15011
2182

71MB
54MB

3433ms
917ms

prog5
prog5

6
6

2
2

1
1

√

84
61

36MB
36MB

63ms
38ms

prog6
prog6

4
4

2
2

1
1

√

--
242

--
39MB

--
131ms

prog7
prog7

prog7

prog7
prog7

prog7

prog7
prog7

9
9

9

9
9

9

9
9

2
2

2

2
2

2

2
2

2
2

2

2
2

2

2
2

√

√

√

√

√

√

√

√

√

√

√

√

14977
10452

14027

7607
9766

7604

6980
6977

75MB
56MB

77MB

50MB
66MB

59MB

57MB
52MB

4222ms
2888ms

3783ms

2472ms
2841ms

2373ms

2354ms
2515ms

prog8

prog8

prog8

7

7

7

2

2

2

2

2

2

√

√

--

206

183

--

50MB

38MB

--

1029ms

125ms

prog9

prog9

72

72

1

1

2

2

√

√

√

2051

2029

51MB

63MB

8351ms

5526ms

Program 1 and Program 2 are used to evaluate strategy 1. Program 1 is the full version of Listing 2. The

Euclidean algorithm is the algorithm for finding the greatest common divisor of two integers. The results

show that the efficiency of analysis can be improved by strategy 1. The comparable result in program 2

shows that a program which can't terminate when calculating invariants can terminate through applying

strategy 1.

Program 3 and Program 4 are used to evaluate strategy 2. Program 3 is Listing 3. Improvements in

Program 3 is tiny but still useful. Program 4 is a program with three layers of loop. The result shows the

201

number of iteration and analysis time can be decreased in this program.

Program 5 and program 6 are used to evaluate strategy 3. Program 5 is Listing 4. Adopting strategy 3 can

both improve the efficiency and make the program terminate.

Program 7, 8 and 9 are synthesized cases. Program 7 is Listing 1. The origin program adopting none

strategy costs the most analysis time. Any single strategy is helpful to save analysis time. Combining several

strategies is useful to improve efficiency further. Program 8 shows a program which can't terminate when

calculating fixpoint can terminate by adopting any of strategy 2 and strategy 3. Program 9 is a simplified

version coming from the actual project which codes about array and pointer are simplified. Program 9 has 72

variables and the analysis can be accelerated via adopting all the strategies.

4.3. Discussion

The main idea to apply our strategies is to simplify some constraints at proper circumstances. Mostly, the

analysis time is decreased. The increment in memory consumption is negligible and memory consumptions

of some programs are even decreased. Simplified constraints make the ranges of variables simple and over-

approximate, which can result in converging faster and make some programs terminate possibly.

Due to not every program has multi-layer loops and functions and the large quantities of relationships

between variables, the precision adjustment strategies are not perfect. But operations in these strategies are

lightweight, which can achieve excellent improvements in the case of little additional cost.

5. Conclusion

The quantity and complexity of constraints have a significant influence on the efficiency of program

analysis in Polyhedra abstract domain. We introduced precision adjustment strategies based on program

locations, variable attributes and constraint types to simplify constraints in program states. According to a

series of experiments on different programs, when there are some loops and functions in programs along

with several symbolic variables, the precision adjustment strategies have a positive effect on improving the

efficiency of program analysis through replacing variables with their ranges and combining several

analogous constraints to a typical constraint.

In the future research, applying precision adjustment strategies in this paper to other numerical abstract

domains is worth trying. We hope that our ideas behind precision adjustment strategies could be applied to

not only in program analysis based on abstract domains but also in other program analysis fields if only

program states could be adjusted through analyzing the relationships between variables and pivotal program

locations.

6. References

[1] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on

Principles of programming languages. ACM, 1977, pp. 238–252.

[2] ——, “Static determination of dynamic properties of programs,” in Proceedings of the 2nd International

Symposium on Programming, Paris, France. Dunod, 1976, pp. 106–130.

[3] A. Min’e, “The octagon abstract domain,” Higher-order and symbolic computation, vol. 19, no. 1, pp. 31–100,

2006.

[4] P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints among variables of a program,” in

Proceedings of the 5th ACM SIGACT- SIGPLAN symposium on Principles of programming languages. ACM,

1978, pp. 84–96.

[5] D. Delmas and J. Souyris, “Astr´ee: from research to industry,” in International Static Analysis Symposium.

Springer, 2007, pp. 437–451.

[6] R. Bagnara, P. M. Hill, and E. Zaffanella, “Applications of polyhedral computations to the analysis and

verification of hardware and software systems,” Theoretical Computer Science, vol. 410, no. 46, pp. 4672–4691,

2009.

202

[7] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall, “The double description method,” 1953.

[8] R. Claris’o and J. Cortadella, “The octahedron abstract domain,” in International Static Analysis Symposium.

Springer, 2004, pp. 312–327.

[9] F. Logozzo and M. Fahndrich, “Pentagons: a weakly relational abstract domain for the efficient validation of array

accesses,” in Proceedings of the 2008 ACM symposium on Applied computing. ACM, 2008, pp. 184–188.

[10] V. Laviron and F. Logozzo, “Subpolyhedra: A (more) scalable approach to infer linear inequalities,” in

International Workshop on Verification, Model Checking, and Abstract Interpretation. Springer, 2009, pp. 229–

244.

[11] A. Min´ e, “Symbolic methods to enhance the precision of numerical abstract domains,” in International

Workshop on Verification, Model Checking, and Abstract Interpretation. Springer, 2006, pp. 348–363.

[12] S. Sankaranarayanan, H. B. Sipma, and Z. Manna, “Scalable analysis of linear systems using mathematical

programming,” in International Workshop on Verification, Model Checking, and Abstract Interpretation. Springer,

2005, pp. 25–41.

[13] S. Apel, D. Beyer, K. Friedberger, F. Raimondi, and A. von Rhein, “Domain types: Abstract-domain selection

based on variable usage,” in Haifa Verification Conference. Springer, 2013, pp. 262–278.

[14] “Declare variables at first use,” http://c2.com/cgi/wiki ? DeclareVariablesAtFirstUse, accessed: 2016-08-03.

[15] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The software model checker blast,” International Journal

on Software Tools for Technology Transfer, vol. 9, no. 5-6, pp. 505–525, 2007.

[16] L. Chen, A. Min’e, J. Wang, and P. Cousot, “Interval polyhedra: An abstract domain to infer interval linear

relationships,” in International Static Analysis Symposium. Springer, 2009, pp. 309–325.

[17] D. Beyer, T. A. Henzinger, and G. Th´eoduloz, “Program analysis with dynamic precision adjustment,” in

Proceedings of the 2008 23
rd

 IEEE/ACM International Conference on Automated Software Engineering. IEEE

Computer Society, 2008, pp. 29–38.

[18] D. Beyer and M. E. Keremoglu, “Cpachecker: A tool for configurable software verification,” in International

Conference on Computer Aided Verification. Springer, 2011, pp. 184–190.

203

