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Abstract. Case-based reasoning (CBR) is a widely used approach in software effort estimation (SEE). 

Unfortunately, it may be over fed by redundant feature(s) that may lead to erroneous prediction. To alleviate 

the problem, this paper proposes a Relevance-Redundancy (R2D) distance that incorporates redundancy 

weighting. Experiment results demonstrate that R2D achieves optimal MAR and Pred(25) on 4 benchmark 

datasets with an average improvement of 17.4% and 27.8%  against second optimal methods. 
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1. Introduction 

To estimate the software project effort, many approaches have been proposed which include expertise-

based techniques, regression based techniques, model-based techniques like COCOMO, learning oriented 

techniques like case based estimation, dynamic-based techniques, and composite techniques. According to 

the survey by Boehm et al. [1], these Software Effort Estimation (SEE) techniques are useful in many aspects 

including budgeting, trade off and risk analysis, project planning and control, and software improvement 

investment analysis. 

Among these techniques, Case Based Reasoning (CBR) is widely accepted due to its easy adoption and 

interpretability [2]. In the literature, many CBR approaches need to adapt a distance measure to identify 

similar project(s) in predicting the effort. However, most of the existing measures focus on the relevance 

between features and effort, but rarely consider the redundancy among features [3,4]. To further explore this 

problem, we propose a mutual information based Relevance-Redundancy (R2D) feature weighting method, 

which recasts the notion of distance measure in CBR. The Relevance and Redundancy in our proposed 

distance measure are defined as the following: 

 Relevance: There are many definitions of relevance in the literature [5]. Generally, it describes the 

correlation between effort and features. We will follow the idea that the more relevance for a feature, 

the higher feature weight it would be assigned in the effort estimation model [6]. 

 Redundancy: Redundancy refers to the correlation among features [7]. The effort estimation model 

might be over fed by redundant features, which leads to bias for the prediction accuracy. 

This work is motivated by the hypothesis that the software effort estimation accuracy may be further 

improved by introducing redundancy weighting in CBR. The R2D measure is proposed to testify the 

assumption. 

The remainder of the paper is organized as follows. Section 2 introduces related work on feature 

weighting and definition of information measures. Section 3 presents the proposed R2D method. Section 4 
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introduces the experiment settings and Section 5 presents the experimental results. Section 7 concludes the 

paper. 

2. Related Work 

2.1. Feature weighting 

Feature Weighting Techniques (FWTs) are common practice to set feature weight in distance measures 

and they can help improve estimation accuracy [8,9]. There are two major kinds of FWTs, namely wrappers 

and filters [6].  Typical wrappers include genetic methods [10], Particle Swarm Optimization (PSO) based 

methods [3] and extensive search [11]. Wrappers are computationally demanding in a way that they apply 

CBR repeatedly with a searching strategy to search better feature weights during each iteration. Filters, on 

the other hand, use statistical measures [4,12] to measure the importance of features and they are less 

computationally demanding than wrappers [3]. Generally, FWTs are designed to assign weights to each 

individual feature. In this case, only feature relevance can be addressed since no correlation between features 

is accounted. 

2.2. Information measures  

In the proposed feature weighting method, we would recast the notion of distance by mutual information 

( I ), normalized mutual information (NI) and conditional mutual information (CI). The definitions of these 

concepts are the same to discrete variables and continuous variables. All the following equations apply for 

continuous variables with the summations being replaced by integrals. 

Let's denote 1,...,i i imX x x    as a discrete feature with probability density function (pdf) 

( ) ( )ip x Prob X x  . In the same way, we have 
jX  and Y . The entropy ( )iH X  defined by Eq.1 is the 

amount of uncertainty (or information) embedded in iX . Typically we will always assume 0 0 0log  . 

Usually the base of the logarithm is 2, so information is measured in bits.  

 ( ) ( ) ( )i

x

H X p x logp x     (1) 

The mutual information ( ; )iI X Y  (Eq.2) measures the amount of information shared by iX  and Y  and 

it can be used to measure the relevance of iX  to Y . 
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The normalized mutual information [13] provides a normalized version of mutual information, hence it 

can be used as a relevance measure. It is defined as follows: 
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( , )
{ ( ), ( )}
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I X Y
NI X Y

min H X H Y
   (3) 

The conditional mutual information measures the unknown part of mutual information between two 

variables. It is defined as the following: 

 ( ; | ) ( ; , ) ( ; )i j i j iCI X X Y I X X Y I X Y    (4) 

3. The Proposed Method  

This section introduces the feature relevance and redundancy weighting methods adapted in this paper. 

Based on the weighting method, a measure called Relevance-Redundancy Distance (R2D) is proposed to 

integrate redundancy weighting with relevance weighting in the distance measure. 

Before we present R2D, we need to define how to measure feature relevance ( , )iRel X Y  and 

redundancy ( , )i jRed X X . Feature relevance ( , )iRel X Y  represents how important the feature iX  is to the 

effort Y . In our work, ( , )iRel X Y  is measured by normalized mutual information (NI) so it ranges from 0 

to 1, as below:  

 ( , ) ( , )i iRel X Y NI X Y   (5) 
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( , )i jRed X X  represents the redundancy between feature iX  and 
jX . Similarly, it is defined as a 

normalized measure of feature redundancy: More redundant features have greater ( , )i jRed X X  values, with 

minimum value 0 and maximum value 1. Recall redundancy is normally the correlation between features. In 

the proposed method, it is defined as the multivariate correlation between ,i jX X  and Y . In information 

theory, the conditional mutual information ( ; | )i jCI X X Y  measures the conditional redundancy provided 

Y . So the multivariate correlation can be explained by the difference between mutual information and 

conditional mutual information, which is ( ; ) ( ; | )i j i jI X X CI X X Y . Following above heuristic, 

( , )i jRed X X  can be defined the follow: 

 
( ; ) ( ; | )
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   (6) 

The relevance weights ( , )iRel X Y  and redundancy weights ( , )i jRed X X  are utilized by the two sub-

modules of R2D: For two projects p  and q , ( , )RelD p q  is the distance that accounts for feature relevance 

and ( , )RedD p q  is the distance that accounts for feature redundancy. Following the heuristics in feature 

selection methods, redundancy should be subtracted from the distance, so R2D follows the form as below: 

 2 ( , ) ( , ) ( , )R D p q RelD p q RedD p q    (7) 

Many distances can be utilized to define ( , )RelD p q , such as weighted Euclidean distance and weighted 

Manhattan distance. In our work, ( , )RelD p q  is defined as the square of weighted Euclidean distance: 
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Unfortunately, we don't have a widely accepted distance to define ( , )RedD p q . In this paper, we 

provide some general rules to guide the design: (1) redundancy is the correlation between features and (2) the 

overall distance 2 ( , )R D p q  should be non-negative. Following the rules, ( , )RedD p q  is defined as Eq.9. 

Note m  is the number of features and in case 1m  , there's no redundancy between features and hence 

( , ) 0RedD p q  .  
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The constant factor 
2

1m 
 ensures 2 ( , ) 0R D p q   since: 
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Denote 1, , m       and 
1

i j ij

ij

w w
w

m





. Then R2D can be summarized as: 
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4. Experiment Setup 

Experiments are designed to evaluate if the proposed method R2D is an effective method. For this 

purpose, R2D is compared against four conventional feature weighting techniques on six datasets drawn 

from the PROMISE repository [14].  

4.1. Datasets 

Six datasets with various characteristics are selected from the PROMISE repository [14] for experiments. 

Pre-processing steps, including data cleaning, normalization and feature selection (with mRMR [15]), are 

performed before feeding the datasets to estimation models. Table 1 summarizes the datasets. 

Table 1: Dataset information 

Dataset Feature Number (Selected) Project Number Effort Range 

Albrecht 7(6) 24 [0.5,105.2] 

China 16(13) 499 [26,54620] 

Desharnais 11(4) 77 [546,23940] 

Kemerer 6(5) 15 [23.2,1107.31] 

Kitchenham 5(4) 135 [219,113930] 

Miyazaki 7(6) 48 [5.6,1586] 

4.2. Comparative methods 

While R2D is a filter method based on Euclidean distance, other available filter FWTs are selected to 

assign weights to Euclidean distance. Specifically, Mantel's correlation (Mantel) [12], correlation coefficient 

(Cor), normalized mutual information (NMI) and FWT with linear regression (LR) [16] are included for 

comparison. 

All methods are used in combination with k  Nearest Neighbor and an optimized k  value is selected 

with 5-fold cross validation for each method. With the optimized k  value, the Leave-One-Out Cross 

Validation (LOOCV) is applied for validation. 

4.3. Evaluation metrics 

Many metrics have been proposed in the literature, such as MAR, MMRE and Pred(25). However, 

MMRE has been criticised for being bias [17], hence we will only employ MAR and Pred(25) in this paper. 

The Mean Absolute Residual (MAR), as defined in Eq.12, measures the absolute residual of the 

estimation. The smaller the MAR is, the more accurate the distance is.  

 
1

1
| |

n

i i

i

MAR y y
n 

    (12) 

Pred(25) is another widely used evaluation metric. It evaluates the percentage of estimates that are within 

25%  of the actual value so a higher value is preferred. Clearly, Pred(25) is insensitive to estimations that fall 

beyond the 25%  accuracy. In fact, it measures the kurtosis which describes the extent to which the 

estimation peaks around its central value [17]. 

 
1

(25) ( 25%)iPred Count MRE
n

    (13) 

4.4. Statistical tools 

We employ the Wilcox's percentile bootstrap method [18] to examine significant difference between 

R2D and comparative methods. Moreover, the Glass’s   is provided to measure the magnitude of difference 

[19]. As defined in Eq.14,   is the pooled standard deviation of absolute residue.   is considered to be 

small ( 0.2 ), medium ( 0.5 ) and large ( 0.8 ) [20]. 
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5. Result Analysis  

The estimation accuracy of R2D and comparative methods are listed in Table 2. Obviously, no method 

achieves optimal estimation accuracy on all datasets. Moreover, it's hard to draw a solid conclusion since we 

may get contradictory conclusion from various evaluation metrics. 

To be specific, R2D achieves minimum MAR and optimal Pred(25) on the same 4 datasets (Albrecht, 

China, Kitchenham and Miyazaki) and minimum MMRE on 2 of the 4 datasets (China and Kitchenham). 

While R2D achieves optimal MAR and Pred(25) on the same datasets, the decrease of MAR values may be 

partly explained by Pred(25) since the improvement of Pred(25) will decrease the MAR value due to a higher 

chance of making 25% -accurate estimation. The improvement of MAR and Pred(25) against the second 

optimal method on the four datasets can reach 17.4%  and 27.8%  on average, respectively.  

Table 2: Estimation accuracy comparison. Optimal values are bolded. 

  Feature Weighting Techniques 

Measure Dataset Cor LR Mantel R2D NMI 

MAR 

Albrecht 7.27 9.02 7.12 5.88 7.28 

China 907 958 822 586 1082 

Desharnais 2448 2212 2007 2285 2082 

Kemerer 128 125 110 125 132 

Kitchenham 1835 1630 1947 1369 1688 

Miyazaki 55.9 55.3 55.9 53.7 55 

Pred(25) 

Albrecht 0.33 0.33 0.33 0.46 0.33 

China 0.58 0.56 0.63 0.77 0.52 

Desharnais 0.3 0.36 0.45 0.34 0.36 

Kemerer 0.4 0.33 0.53 0.47 0.47 

Kitchenham 0.31 0.41 0.29 0.53 0.44 

Miyazaki 0.29 0.31 0.29 0.4 0.29 

 

To understand the statistical validity of the comparison, the median difference of absolute residual (AR) 

between R2D and comparative methods is presented in Table 3. For each pair-wise comparison, the 

probability of median difference 0  is given by p . The upper and lower bounds give the 95% confidence 

interval for the median difference. Therefore, an interval that does not straddle zero indicates a significant 

difference. 

Table 3: Median absolute residual (MAR) differences between R2D and comparative methods. 

Dataset Method p-value Median Lower Upper 

Albrecht 

Cor 56.90% -87.00% -327.00% 490.00% 

LR 0.7 -65.00% -483.00% 3.25 

Mantel 61.80% -57.00% -528.00% 380% 

NMI 0.451 -0.27 -2.65 3.12 

China 

Cor 0 -86 -136 -35 

LR 0 -134.5 -224 -69 

Mantel 0 -68.5 -118.5 -38.5 

NMI 0 -125.5 -186 -63.5 

Kitchenham 

Cor 0.004 -197 -389 -34.5 

LR 0.068 -81 -337 16.5 

Mantel 0 -170 -492.5 -44.5 

NMI 0.32 -114 -416 87 
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As can be observed, there is significant difference for MAR on China and Kitchenham. Less significant 

difference can be identified on other datasets. We can observe from Table 1 that both Kitchenham and China 

has a large number of projects. As noticed by [19], significant difference can be identified provided 

sufficient data. Hence the statistical test may fail to identify significant difference due to insufficient data. As 

an example, Table 4 presents the MAR effect sizes of R2D against comparative methods. As can be observed, 

even though difference of MAR on Albrecht dataset is not significant by Table 3, the difference reaches 

small according to Glass's   ( 0.2 ). Hence the threats of statistical test to the conclusion should be 

addressed. 

Table 4: MAR Effect size of R2D against comparative methods. 

Albrecht 0.19 0.33 0.18 0.19 

China 18.00% 20.00% 14.00% 25.00% 

Desharnais 0.06 - - - 

Kemerer 0.01 0.00% - 3.00% 

Kitchenham 0.05 0.03 0.07 0.04 

Miyazaki 0.01 0.01 0.01 0.01 

- stands for the case where comparative method outperforms R2D 

From the above analysis, we can learn that redundancy weighting (R2D) is an effective method in a way 

that it achieves optimal MAR and Pred(25) on the same 4 out of 6 datasets. 

6. Conclusion 

This work is motivated by the assumption that the estimation accuracy may be further improved by 

addressing both feature relevance and redundancy in Case Based Reasoning (CBR). Following the 

assumption, a new distance measure called Relevance-Redundancy (R2D) is proposed to testify the 

assumption. Experiment results on six benchmark datasets indicate that the assumption is tenable to some 

extent. 

Although the estimation accuracy can be improved by our assumption, current implementation is 

intuitive in essence. Hence we plan to apply some optimization techniques such as PSO to learn better 

relevance-redundancy weighting. 
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