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Abstract. In this paper, a novel l1 minimization model was proposed for image denosing. We firstly 

proposed a new regularization term called Steering Kernel Regression Total Variation(SKRTV), which 

exploits the local structural regularity properties in natural images. By combining the SKRTV regularization 

term and global fidelity term, we proposed a maximum a posteriori probability framework of image 

denoising. Furthermore, split Bregman iteration was applied to implement the proposed model. Extensive 

experiments demonstrated the effectiveness of the proposed method. 
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1. Introduction 

Image denoising is an important and challenging inverse problem in image processing and computer 

vision since during the processes of being captured, digitized, recorded, and transmitted, an image is usually 

distorted and noisy. It refers to the recovery of a digital image that has been contaminated by some types of 

noise, while preserving image features such as the edges and the textures. Many approaches have been 

proposed to reconstruct the original image by exploiting the inherently spatial correlation. In these 

approaches, the use of variational methods and nonlinear partial differential equations (PDEs) [1] have 

significantly grown. The classical example is the total variation (TV) model, which was proposed by Rudin 

in [2] consisting of the minimization of the following energy that involves the total variation (TV) norm as 

an edge-preserving regularization functional: 

The TV model has been proven to be quite effective for removing noise without causing excessive 

smoothing of the edges. However, it is well known that the TV model suffers from the so-called staircase 

effect, which may produce undesirable blocky images. With the development of machine learning techniques, 

non-parametric methods have been widely used in image processing problem，which rely on the data itself 

to dictate the structure of the model, in which case this implicit model is referred to as a regression function 

[3]. This family of methods is based on the assumption of local structural regularity, which says that there 

are meaningful structures in the spatial domain of natural images. Examples are bilateral filtering [4] and 

structure tensor based methods [5]. These methods utilize the local structural patterns to regularize the image 

processing procedure and based on the assumption that images are locally smooth except at edges. 

In this paper, coupling the TV method and SKR method, we proposed a novel regularization term called 

Steering Kernel Regression Total Variation (SKRTV), which could both robustly obtain the local structure of 

images and effectively remove the noise. Split Bregman iteration was applied for the optimal solution due to 

the rapid convergence in dealing with TV-based optimization problem.  

2. The Proposed Methed 

2.1. Steering kernel regression total variation 
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Steering kernel regression (SKR) is an effective tool for image reconstruction. The SKR framework 

defines its data model as:  

                                                      (1) 

where iy  is degraded sample at ix  ( 1ix and 2ix  are spatial coordinates), )z(  is the regression function to be 

estimated, iε represents i.i.d. zero mean noise, P stands for the total number of samples. The kernel 

regression framework provides a rich mechanism for computing point-wise estimates of the regression 

function with minimal assumptions about global signal or noise models. As a local method, the SKR uses x  

near the sample ix , and we have the Nth order Taylor series: 

   (2) 

With: 

 

where ∇ and H are the gradient(2*1) and Hessian(2*2) operators, respectively. 

Since this method is based on local signal representations, a logical step is to estimate the parameters 

 N
0=nnβ

 using all the neighboring samples  P
1=iiy . A weighted least-square formulation of the fitting problem 

capturing this idea is: 

                                 (3) 

With 

                                               (4) 

where 
kh  is global parameter, iC  is estimated as the local covariance matrix of the neighborhood spatial 

gradient vectors. 

Regardless of the regression order and dimensionality of the regression function, we can reform it as a 

weighted least-square optimization problem: 

                                                        (5) 

where 

 

 

The solution to Eq.(5) is:  

                                    (6) 

1e is a column vector,   1ωi , we call iω  the equivalent kernel weight for iy . 

Due to the ability of preserving edges, we extend steering kernel regression to bounded variation domain 

and propose a new regularization term called steering kernel regression total variation.  

Given an observed image, the SKR gradient of an image at point i  is defined as: 

                                                               (7) 

where  ji,ω  is the SKR weight between ix  and its similar pixel jx , which has been defined in Eq.(4). 

2.2. The Proposed Model 
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In order to exploit the image local correlation, we propose to use a novel regularization term based on 

steering kernel regression total variation (SKRTV) to learn a local structure prior. Along with the processing 

of the data to build the weight in Eq.(7), we expand the SKR to SKRTV, which provides an effective 

mechanism for the inverse problem. 

                                                (8) 

where )P(Xi denotes the neighbors of iX . j)(i,s  is the SKR weight between iX  and its similar pixel jX . 

The SKRTV term makes the local smoothness assumption that a target pixel can be weighted average 

from its neighbors as the SKR term, which can exploit the local structural regularity in natural images. By 

expanding SKR to the SKRTV, we can obtain more satisfactory results with sharper edges. We can estimate 

X by solving: 

                                                                (9) 

where λ is a trade-off parameter. Steering Kernel Regression can robustly obtain the local structure of images 

by analyzing the pixel value differences based on estimated gradients. In the SKR, the weights or kernels 

locally adapt to the underlying structure of the image. The weights follow locally dominant directions and 

dictate the contribution of various pixels in a local neighborhood of the pixel to be denoised. By expanding 

SKR to the SKRTV, we can obtain images with sharper edges. 

2.3. Implement of The Proposed Model 

In order to effectively solve the proposed model, we adopt the split Bregman iteration method due to the 

rapid convergence in dealing with TV-based optimization problem. The key to the split Bregman iteration is 

“de-couple” the l1 and l2 portions of the energy in Eq.(9). The idea is to reformulate the problem as: 

                                     (10) 

To solve this problem, it is firstly converted into an unconstrained problem: 

                                                                 (11) 

The above problem can be modified as the following iterative procedure: 

                    (12) 

The solution to Eq.(13) can be performed efficiently by iteratively minimizing with respect to X and d 

separately. The two steps we must perform are: 

 

 

To solve step1, the optimization problem we must solve for kX  is now differentiable, we can thus use a 

wide variety of optimization techniques to solve this problem. In step2 of the above algorithm, there is no 

coupling between elements of d, we can explicitly compute the optimal value of d by shrinkage operators. 

3. Acknowledgements  

To validate the effectiveness of the proposed method, we conduct experiments on various images. 

Several state-of-the-art methods, such as BM3d [6], NLTV [1], SKR [3], KSVD [7] and PLOW[8], are used 

as comparison baselines. The peak signal-to-noise (PSNR) and the structural similarity (SSIM) are employed 

to illustrate the quantitative quality of the denoised results. Since the human visual system is more sensitive 

to the luminance channel than the chrominance channels, we only use grayscale images in this paper.  

The denoising results with different methods on two grayscale images: Lena and Monarch are shown in 

Table 1, where the bold parts imply the best effects. From Table 1, we can observe that the original SKR 

method has lower PSNR and SSIM values because l2-based regularization may blur edges during denosing 
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process. Our method significantly outperforms the NLTV, KSVD and PLOW in the most part. To further 

illustrate the effectiveness of the proposed method, the results of grayscale image ”Lena” for perceptual 

quality comparison are shown in Figure 1. We can observe that the non-local TV method is able to 

effectively suppressing noise, but it generates obvious jaggy artifacts along edges. The SKR method could 

keep better structure, but it blurs edges. Although the learning-based method (KSVD) can produce some 

high-frequency details, the resulted images appear to be unnatural. PLOW tends to oversmoothing edges. 

 

 
(a) Original image                           (b) Noisy image                     (c) The proposed method                          (d) BM3D 

 
(e) NLTV                                      (f) SKR                                        (g) KSVD                                       (h) PLOW 

Fig. 1: Comparison of visual results by different methods on ”Lena” with  =30. 

Table 1: Performance of Different Methods: PSNR and SSIM Results on Two Images 

Images 
Lena Monarch 

SKRTV BM3D NLTV SKR KSVD PLOW SKRTV BM3D NLTV SKR KSVD PLOW 

 =10 
PSNR 34.49 34.48 33.33 33.69 33.98 33.33 35.00 34.56 33.79 33.06 34.01 34.07 

SSIM 0.931 0.931 0.910 0.914 0.926 0.919 0.971 0.969 0.947 0.946 0.961 0.962 

 =20 
PSNR 30.94 30.98 29.91 30.37 30.40 30.07 30.93 30.66 30.09 29.13 30.19 29.71 

SSIM 0.883 0.882 0.854 0.872 0.861 0.871 0.937 0.935 0.910 0.917 0.922 0.926 

 =30 
PSNR 28.89 28.90 28.05 28.26 28.37 28.49 28.69 28.64 27.93 27.11 28.00 27.90 

SSIM 0.844 0.839 0.808 0.833 0.818 0.832 0.902 0.901 0.850 0.878 0.882 0.891 
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