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Abstract. Few researches have been done for dynamic modeling on the multiple-input multiple-output 

system in actual industry so far. Therefore, this paper proposed a novel dynamic model to solve the 

multiple-input multiple-output problem. It respectively mapped the delayed output and the primal input into 

different nonlinear space, associated the kernel trick with the support vector regression technique to estimate 

the nonlinear dynamic problem. Simulation results of dynamic estimation of COOH content and degree of 

polymerization in the poly ethylene terephthalate production demonstrated that the present algorithm exactly 

approached the output of test set and reduced the error of test set respectively to the magnitude of 10
-7

 and 

10
-8

. 
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1. Introduction 

Support vector machines are originally developed for pattern recognition by Vapnik [1], and later they 

are carried over to the case of support vector regression (SVR) [2] which conduces to the problem of 

function estimation and data modeling. Generally, SVR is readily used for establishing steady-state model [3, 

4, 5, 6] of nonlinear system [7, 8]. However, actual industrial processes such as poly ethylene terephthalate 

(PET) production changes over time. Therefore, dynamic modelling on the industrial processes could 

constantly monitor the production output. So far, there were few studies on the dynamic model of SVR, and 

most of them were based on the single-input single-output (SISO) system [9, 10]. The ideas of these dynamic 

models were usually simple. That is, the original input variables and delayed feedback output together 

constituted the inputs of the dynamic model. But for multiple-input multiple-output (MIMO) or multi-input 

single-output (MISO) system, it is undesirable to carry on with the thought. Goethals [11]
 
presented the 

MIMO dynamic model which was composed of the linear mapping of feedback output and the nonlinear 

mapping of the original input. The model had difficulty in many parameters selection and problem solving. 

Feng [12] also developed a dynamic model on the MIMO system. The algorithm regarded the output and 

each input attribute as the inputs of SVR, and had the same form as the SISO system. However, it became 

more complex due to multiple input attributes. 

Based on the above consideration, this paper proposed a novel approach for dynamic modeling of the 

MIMO or MISO system. Respectively, it mapped the original input variables and the delayed feedback 

output into different nonlinear space, and then regarded their linear combination as the objective dynamic 

model. Besides, it also applied v-linear programming SVR (v-LPSVR) [13]
 
to the primal problem, which 

restricted the target function to the linear function and simplified the problem solving. The experimental 

results of PET production indicated that the dynamic model of COOH content and degree of polymerization 

using the proposed method basically approximated the actual output of test set, and respectively restricted 

the mean squared error (MSE) of test sets to the magnitude of 10
-7

 and 10
-8

. 
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2. Dynamic Modeling on the MIMO System 

In a SISO system, the linear dynamic model of the autoregressive model with exogenous inputs (ARX)[9] 

form is as follows, 
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where ut , yt R, and respectively represent the original input and output variable. And m and n are 

respectively the delayed orders of the model. We can reconstruct the input variable xt = [yt-1, …, yt-n, ut, 

ut-1, …, ut-m] of the SVR algorithm and then establish a dynamic model on the SISO system.  

2.1. Dynamic model for the MIMO system 

In the MIMO system, we propose to map the original input variables and the delayed feedback output 

into different nonlinear space. The dynamic model is written by 
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where b, yt R, and utR
d
. Thus, the objective function is represented by 
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The constant C1, C2 involve the trade-off between target function and deviation. ℓ denotes the size of 

training set, m, n is respectively the delayed input and output order, the slack variables ξ1, ξ2 with and 

without the asterisk are tolerated deviations from the tube width ε1, ε2. Then we construct the Lagrangian L of 

the objective problem, and give the conditions for optimality as follows, 
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where the dual variables α,  with and without the asterisk are Lagrange multipliers. 

2.2. Dynamic model based on ν-LPSVR 

The ν-LPSVR approach views the insensitive tube width ε as a constrained variable, automatically 

determines the size of ε to fit the data, and effectively controls the number of support vectors and the fraction 

of errors. Then the above optimization problem is expressed by,  
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Here the kernel function k1 is the popular and powerful kernel function, Gaussian radial basis function 

kernel. 
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And the kernel function k2 is of the form, 
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Then the linear programming problem is represented in the matrix form, 
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Here, 1


and 0


are all (ℓ–r1) ×1 column vectors, and K1, K2, 0


and I are (ℓ–r1) × (ℓ–r1) matrices. 

Then one searches for the solution S via the simplex algorithm or the interior-point method. 

3. Simulation Results 

PET is a commodity product for many different applications. Many continuous processes are well 

established for the industrial production of PET. Here, we regarded reactor temperature, pressure and level as 

the input variables and COOH content and degree of polymerization as the output, and then developed a 

dynamic model of COOH content and degree of polymerization based on above technique. The dataset 
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comprised 900 continuous instances with 5 percent of Gaussian noise. The first three-quarters of samples 

were training set, the remaining were test set. Some samples were illustrated as Fig. 1 and 2.  
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  Fig. 1: Reactor level data.                      Fig. 2: Reactor pressure data. 

Besides, we evaluated the model performance by MSE of all test sets. In the experiment, let m = 0 and n 

= 1. The six model parameters were chosen by the cultural algorithms [14] as shown in Table 1. 
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Fig. 3: Prediction of degree of polymerization.         Fig. 4: Prediction of COOH content. 

Fig. 3 illustrated that the degree of polymerization test set varied with time, the solid denoted the target 

output, and the point line was the forecast output of test set. Obviously, the two lines basically coincided. 

This depicted the proposed method obtained minimum generalization error. From Fig. 3, the two curves were 

not smooth due to data noise. Fig. 4 showed the change of COOH content over time. It had the similar 

conclusion with the model of the degree of polymerization. That further indicated the presented method was 

feasible to construct dynamic model of the MIMO system.  

4. Conclusions 

It is undesirable to build steady-state model of the practical industrial process varying with time. In order 

to follow the dynamic trend of the MIMO system by SVR, we respectively made nonlinear transformation 

for the input and the feedback output, and ingeniously associated the Gaussian kernel with the problem 

optimization. The PET simulation results were encouraging. This demonstrated the proposed approach 

achieved excellent generalization performance. It is more important that it provides a good way available for 

dynamic modeling on the MIMO system. The further work is determining the model order or changing 

original structure form to explore the nonlinear dynamic system. 

Table 1: Parameter settings and performance of the dataset  

Model C1, C2 v1, v2 σ1, σ2 
Number of support 

vectors 

MSE of 

test set 

COOH content 6655, 0.05 0.56, 0.247 0.0001, 1.34 130 4.3E-7 

Degree of polymerization 9661, 84782 0.71, 0.25 83.3, 0.0025 157 9.4E-8 
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