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Abstract. Compressive Sensing is applicable to the sparse signals or sampling signals, and can compress 

the signal data properly in course of sampling, therefore, it can carry out sampling at a rate much lower than 

that specified as per Nyquist Sampling Theorem, and reconstruct the original signals accurately. This paper 

mainly studies the channel estimation algorithm of OFDM system, including the traditional channel 

estimation algorithm and that based on compressive sensing theory, and makes a relevant analysis on their 

respective theories, thoughts and characteristics. Furthermore, an experiment simulation is conducted here to 

compare their performance in an all-round manner, and the conclusion indicates that the signal acquisition 

technology based on compressive sensing technology performs better. The compressive sensing can 

effectively solve the problems encountered by the traditional signal sampling and coding technology in the 

aspect of processing speed, memory space and anti-interference function, showing a promising application 

background. 
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1. Introduction 

With the rapid development of digital multimedia and communication, people have sought to reduce the 

burden of data acquisition, storage and transmission. Conventionally, Shannon’s celebrated theorem, which 

indicates that the sample rate must be at least twice the maximum frequency present in the signal [1], 

underlies nearly all data acquisition protocol in real-world application. Compressive Sensing, which applies 

to the sparse signals or sampling signals [2] and aims to recover signals from incomplete linear 

measurements [3], is a relative new signal acquisition method internationally proposed in recent years [4], 

and can compress the signal data properly in course of sampling. Therefore, it can carry out sampling at a 

rate much lower than that specified as per Nyquist Sampling Theorem, and reconstruct the original signals 

accurately. The compressive sensing can effectively solve the problems encountered by the traditional signal 

sampling and coding technology in the aspect of processing speed, memory space and anti-interference 

function, showing a broad application background.  

In the modern mobile communication system, in fact, the delay spread phenomenon is the main factor 

that contributes to selective fading of the frequency in the wireless channels. Furthermore, the common 

Doppler effects also causes this fading in the time domain. Therefore, these two fading would make the 

phase and amplitude of the signals undergo severe noises when passing the wireless channel, and leads to 

deterioration of performance in the whole communication system. By transforming the high-speed serial 

signal flow into low-speed parallel signal flow, the OFDM system can decrease the data transmission speed 

while increasing the duration of subcarrier data symbol, therefore reducing the interference among symbols 

and enhancing the bandwidth efficiency. Great progress and achievement have been made in the signal 

estimation algorithm of OFDM system, and the pilot method is just an excellent algorithm. 
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In this paper, we propose a novel channel estimation algorithm, which utilizes the compressive sensing 

theory in estimating OFDM communication channels and achieves robust performance. Numerical 

experiments show that we can use the sparse values of channel that is known in advance to go beyond the 

restriction of Nyquist Sampling Theorem to reduce the number of pilot insertion, therefore, making the 

channel estimation more close to the actual value. 

2. Theoretical Basis of Compressive Sensing 

The compressive sensing technology has broken through the bottleneck of Shannon's sampling theorem, 

made the observation data required to reconstruct the original signals much less than that required by the 

traditional sampling method, and enabled the acquisition of high-resolution signals. The compressive sensing 

mainly focuses on three core issues: sparse expression of signal, sparse observation of signal and 

reconstruction of signal [5]. 

For a certain signal, we usually express it roughly as a linear combination of some linearly independent 

basis. Assume that a discrete signal with finite length 
1Nx R  ,  1 2, , , , , N    is the orthogonal basis 

or dictionary of a certain N N , and the signal x under basis  may be expressed as: 
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Wherein, ,k is x  , and 1NS R   

Assume that a certain discrete signal 1Nx R   is k  sparse, namely, this signal contains at most k non-

zero quantities; we can express it as 
0

x k , wherein 
0

  refers to the number of non-zero element; we 

adopt the following equation to describe the k  sparse signal: 

 0
:k x x k                                                                       (2) 

A majority of signals may be expressed as the k- sparse signal under a certain basis. 

The sparse observation of signal inevitably involves the design of measurement matrix [6], which plays a 

crucial role. The design of measurement matrix mainly follows the Uniform Uncertainty Principle and 

Restricted Isometry Property, and its arithmetic expression is as follows: 
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The signal reconstruction serves as the most crucial part of compressive sensing [7]. It means 

reconstructing the N -dimension ( M N ) k sparse signal x  on the basis of vector quantity Y  of M -

dimension measurements. The norm is defined as follows: 
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As for the mathematical solution, many existing mathematical conclusions can prove that the same 

results may be obtained at nearly full probability by seeking the norm minimization 1l . In other words, by 

solving the followings: 

 
1

arg minx s


  s. t., X S Y    (5) 

We can reconstruct the original signal accurately [8]. 

3. Sparse Channel Estimation of OFDM System 

3.1. OFDM system 
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The functional block diagram of OFDM system is shown as follows: 

 

Fig. 1. Functional Block Diagram of OFDM. 

The expression of received signal [9]: 
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By conducting M sampling for the received signals, we get: 
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Wherein, [ ]jx m  refers to the discrete sampling signals that are sent out, and it may be expressed as: 
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The equation (7) may be transformed into the more intuitive matrix expression: 
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The matrix expression may be simplified as: 

 Y XH Z   (10) 

Wherein, Y refers to the received signal, X the sent signal, Z the Gaussian white noise, H the unknown 

matrix. Assume that the channel is sparse, that is, p discrete quantities only have p1 non-zero coefficients, 

and 1p p , then we can adopt the compressive sensing method to carry out the channel estimation [10]. 

3.2. Sparse channel estimation 

For many communication environments, such as the multiple line system of broadband, hydro-acoustic 

communication system and deep space communication, their channels all have sparse characteristics. In 

equation (10), we conduct the Discrete Fourier Transform conversion at point M of both sides at the same 

time, and then convert the time-domain information into frequency-domain information for analysis and 

calculation. The convolution of time domain equals that of frequency domain, and the different OFDM 

signals do not interfere with each other. Assume that the kst subcarrier of the ist OFDM signal sends the 

frequency-domain signal ( )x k and receives the signal ( )y k  [11]: 

        y k H k x k z k   (11) 

Wherein ( )H k refers to the frequency response form of channel, which can be expressed as: 

  1 2 1 2( ) , , ... , ...
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Wherein B refers to the channel amplitude matrix, which can be expressed as: 
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In this way, the sparsity expression of channel just changes into that of channel amplitude. In the actual 

channel transmission system, the signal energy is distributed unevenly, and often concentrates on the finite 

number of multi-path components. 

The OFDM system channel [12] has different pilot types and different insertion modes, which exerts a 

direct influence on the accuracy of channel estimation; the pilot inserted into the OFDM system mainly 

includes the following types: 

 

Fig. 2: Pilot Scheme: (a) block-type pilot; (b) comb-type pilot; (c) interval-type pilot. 

Actually, the pilot insertion process is also a sampling process. According to the traditional sampling 

principle, the pilot insertion interval must comply with the Nyquist Sampling Theorem so as to get an 

accurate value. Assume that the minimum sampling or insertion interval in the direction of time and 

frequency domain is fN and tN  respectively, if we don’t want to impair the frequency-domain and time-

domain signal, we can get: 
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Wherein, cF  refers to the sub-carrier interval, and df  the Doppler spread. In the practical application, 

both fN  and tN  usually need to be integer. 

As is known according the OFDM system principle [13], the pilot signal was added at the signal 
transmitting end. If we denote the pilot selection symbol matrix as R , the whole pilot process may be 
expressed as follows: 

    p pY RY R diag X Fh R Fn diag X Fh R Fn         (16) 

If we replace  R diag X F  with matrix  , and 'n  with R Fn , the equation (16) will be converted 

into: 

 
'

pY h n    (17) 

Obviously, we may regard pY  and   as the observed value and sensing matrix in the compressive sensing 

process, wherein, h  refers to the sparse solution that we want. The compressive sensing method may be 

applied to get the estimation solution for channel h  [14]. 

4. Experiment Simulation 

In order to find out the difference in channel estimation performance between the compressive sensing-

based on orthogonal matching pursuit (OMP) method [15], the traditional least-square estimation (LS) and 

the least mean-square estimate (MMSE), this paper made the following simulation: assume that the OFDM 

sparse channel remains unchanged within one symbol; the sub-carrier number of OFDM is 256; the QPSK 

modulation is adopted for the sent series; the OFDM channel uses the multipath sparse channel featuring 

multi-frequency fading; the selected path delay will be the integral multiple of sampling period in order to 

facilitate the research. The channel length is set as 30; the sparsity K is 5; the pilot number chosen for the 

simulation herein is 4-6 times of the sparsity, that is, 20 and 30. 

When selecting the pilot number P=20, the normalized mean squared error (MSE) of such 3 estimation 

methods as LS, MMSE and compressive sensing OMP are compared as follows: 
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Fig. 3: MSE Comparison between LS, MMSE and OMP Algorithm (P=20). 

When selecting the pilot number P=30, the MSE of such 3 estimation methods as LS, MMSE and 

compressive sensing OMP are compared as follows: 

           

Fig. 4: MSE Comparison between LS, MMSE 

and OMP Algorithm (P=30). 
Fig. 5: BER Comparison between MMSE and 

OMP Algorithm. 

The bit error rate (BER) of such two estimation methods as MMSE and compressive sensing OMP are 

compared as follows: 

By comparing Fig. 3 with Fig. 4, we can see that the MSE of LS, MMSE and compressive sensing OMP 

algorithm will all decrease in various degrees with the increase in pilot number [16]. When the Signal Noise 

Ratio (SNR) of OFDM system is less than 5dB, we don’t see much difference between the MMSE algorithm 

and the compressive sensing OMP algorithm, that is, the latter does not perform significantly better at this 

time. However, with the increase in SNR of system, the compressive sensing technology will show more 

obvious advantages. As can be seen from the simulation diagram, in order to achieve the same performance, 

the channel estimation algorithm based on compressive sensing needs much less pilot numbers than the 

traditional channel estimation algorithm, and the saved pilot number may be used to transmit data; that 

means, the compressive sensing technology can be used to further enhance the spectrum efficiency, therefore 

constituting a better channel estimation algorithm. According to the BER comparison shown in Fig. 5, the 

compressive sensing OMP algorithm has a lower channel BER estimation result. As the SNR of system 

increases gradually, the OMP algorithm will show a significantly better performance, because the low SNR 

(namely a higher Gaussian white noise in the channel) means that the compressive sensing technology is 

inaccurate at the beginning of sampling, which will lead to the failure of OMP algorithm at the time of 

reconstruction. 

5. Conclusions 

By studying the application of compressive sensing theory in the OFDM channel estimation, this paper 

mainly analyzes the OFDM channel model and the compressive sensing-based OFDM channel model, and 

introduces their theories, mathematical basis and mathematical derivations in a detailed and step-by-step 

manner. A simulation experiment is done for the traditional channel estimation algorithm (LS and MMSE) 

and the channel estimation based on compressive sensing theory in order to find out the latter’s advantages in 

channel estimation by analyzing their performance index (MSE and BER). 

The simulation results show that the compressive sensing-based OFDM channel estimation algorithm 

uses less pilot number, but gives a better estimation results for channel H. When the result of channel 

estimation is applied in the system equilibrium of OFDM communication system, we can see that the 
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compressive sensing-based method leads to a lower BER, enhances the bandwidth efficiency and increases 

the throughput of OFDM system. According to the channel estimation method newly proposed in this 

chapter, we fully believe that the compressive sensing technology will be more extensively applied in the 

field of signal estimation in the future. 
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