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Abstract. Link prediction is a field under network analysis that deals with the existence or emergence of 

links. In this study, we investigate the effect of using weighted networks for two link prediction techniques, 

which are the Vector Auto Regression (VAR) technique and our proposed modified VAR that uses Support 

Vector Machine (SVM). Using a co-authorship network from DBLP as the dataset and the Area Under the 

Receiver Operating Curve (AUC-ROC) as the fitness metric, the results show that the performance of both 

VAR and SVM are surprisingly lower in the weighted network than in the unweighted network. In an attempt 

to improve the results in the weighted network, we incorporated features from the unweighted network into 

the features of the weighted network. This enhancement improved the performance of both VAR and SVM, 

but the results are still inferior to those in the unweighted networks. We identified that the true positive rate 

was generally lower in the weighted network, thus resulting to a lower AUC. 
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1. Introduction 

The prominence of the Internet has made communication, interaction, and collaboration very convenient. 

As of August 2015, there are 3.175 Billion active Internet users, with 2.206 Billion active social media users. 

Over the year 2014, social media users have risen by 176 Million in just a single year [1]. As a result of the 

growth in social media users, more data on actual social networks are available for analysis. This 

development in social networks serves as the main motivation for our study in Social Network Analysis 

(SNA), specifically link prediction. 

For the link prediction task, the network representation can either be unweighted or weighted. In the 

unweighted network, a binary value of 0 or 1 is used to respectively indicate the presence or absence of a 

link.  In the weighted structure, a value of 0 represents the absence of a link between a pair of nodes, while a 

positive value is used to represent the presence and relative strength of the link. Most works on link 

prediction use an unweighted network, whereas only a few have explored weighted networks, such as 

[2,3,4,5].  

Vector Auto Regression (VAR) has been shown to be one of the best techniques for time-series link 

prediction in both unweighted and weighted networks [6]. In our preliminary work on an unweighted 

network [7], we were able to improve the VAR technique by transforming its components into a feature set 

for classification with Support Vector Machine (SVM). The result of our preliminary work motivated us to 

apply our technique to a weighted network, and this paper discusses our investigation of the effect of using a 

weighted network over the use of an unweighted network in dynamic link prediction. 

2. Review of Related Literature 

2.1. The Vector Auto Regression Technique 
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The VAR econometric model is an extension of the univariate autoregressive model that is applied to 

multivariate data. It provides better forecast than univariate time-series models and is one of the most 

successful models for analyzing multivariate time-series [6]. In a recent work on dynamic link prediction, the 

VAR technique was applied in homogeneous networks represented by both unweighted and weighted 

adjacency matrices. For each of the unweighted and weighted adjacency matrices, five additional matrices 

were created according to different similarity metrics. These metrics are the Number of Common Neighbor 

(CN), Adamic-Adar Coefficient (AA), Jaccard’s Coefficient (JC), Preferential Attachment (PA) and the 

Resource Allocation Index (RA). Using a dataset created from DBLP, the VAR technique showed the best 

performance, in both unweighted and weighted networks, among the many link prediction techniques that 

include the Moving Average (MA), Random Walk (RW) and the Autoregressive Integrated Moving Average 

(ARIMA). For a more detailed discussion, refer to [6]. 

2.2. Improvement of VAR by SVM 

In our preliminary work [7], we were able to improve the VAR technique by using Support Vector 

Machine (SVM) classification algorithm. We used the co-authorship network in DBLP and followed the 

dataset preparation from [6]. We then created six matrices: an unweighted adjacency matrix, and five 

matrices based on the same five similarity metrics used in [6] for the VAR technique: CN, AA, JC, PA, and 

RA. By using these matrices as the features for classification with SVM, the average Area Under the 

Receiver Operating Characteristic Curve (AUC-ROC) was improved to 84.78%, from 82.04% in VAR. The 

significant improvement of SVM over VAR motivated us to extend our work to weighted networks. 

2.3. Previous Works and Issues on Weighted Networks 

Previous works on weighted networks performed static link prediction instead of dynamic link prediction. 

Under the former problem domain, the presence or absence of links on a given time slice is predicted based 

on the presence or absence of other links on the same time slice. Various studies report different effects in 

static link prediction performance. According to [2], the AUC performance of four out of five supervised 

learning techniques improved when a weighted network was used over the unweighted counterpart. The 

feature values for the supervised learning were created from eight proximity metrics, which are the CN, JC, 

PA, AA, RA, Path Distance (PD), Local Path (LP) and Local Clustering Coefficient (CC). The best results 

were obtained when the network was weighted according to the number of co-authored papers between two 

authors [2]. 

On the other hand, unsupervised learning was used by [3] and [5] on different networks, and their results 

show that the prediction performance varies with the type of network. Both studies incorporated a parameter 

a that was used to control the degree of influence of the link weights. In [5], the link prediction performance 

in the air transportation network improves, as the influence of the link weights is decreased (the parameter a 

is negative), while opposite results were obtained for the neural and carbon networks. In [3] where three 

metrics were used (CN, AA, and RA), the best value for the parameter a varied from positive to negative 

values depending on the specific network used and the metric applied [3]. 

3. Methodology 

3.1. Data 

Following the dataset preparation in our preliminary work [7], we used the co-authorship network in 

DBLP that was based from the dataset preparation in [6]. We selected only the articles from 2003 to 2013, 

removing all items labeled as “inproceedings”, “proceedings”, “book”, “incollection”, “phdthesis”, 

“masterthesis”, and “www”. The reduced set was further trimmed by removing all authors who have 50 

articles or less. The final dataset has 1,743 authors and 21,920 articles [8]. The number of co-authorship links 

in this dataset is less than 1% of the total number of possible links. To build the unweighted and weighted 

time-series models, the dataset was partitioned based on the year of publication. Each of the resulting 11 

subsets, corresponding to years 2003 (t=0) up to 2013 (t=10), was processed to generate a snapshot of the 

dynamic co-authorship network graph. A snapshot is represented by an n × n adjacency matrix, where n = 

1,743 (the number of authors). In the weighted network, an entry value is equal to the number of co-authored 
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papers between two authors. Based from the unweighted and weighted adjacency matrix for each snapshot, 

five similarity metrics were computed for the unweighted (U) and weighted (W) networks: 
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where Γ(x) is the set of nodes adjacent to node (author) x. 

3.2. Link Prediction on a Weighted Network 

To form the baseline models of VAR, we extended the VAR model proposed by [6] for VAR of lag 2 to 

lags of 3, 4, and 5, and then applied the values from the unweighted and weighted adjacency matrix and 

similarity metrics. The predicted adjacency matrix at time t, denoted by    
 , for lag 2, is computed using the 

formula: 
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where each   
  is an n × n matrix containing the actual values for the (weighted) similarity metric i at time j, 

while the n × n matrix    and the scalar coefficients   
  are time-based VAR model parameters. We applied 

linear regression, using the lm() function in R, to find the best fitting parameter set for each snapshot. 

To form the baseline models for SVM, we first reduced the dataset for the training phase by collecting all 

positive links and randomly selected an equal number of negative links. Then each instance representing the 

presence or absence of a co-authorship link is mapped to a k-dimensional feature space, following the linear 

dependency assumed in the VAR model of this study. These instances were further projected to higher 

dimension using an SVM linear kernel function. An SVM classifier is then used to predict the class for each 

instance, and these predictions are collected to construct the predicted adjacency matrix,    
 , of the network 

at time t. 

3.3. Performance Measure 

To compare the link prediction performance of the VAR and SVM models, we applied backtesting. That 

is, we first built a VAR (or SVM) model for time t, then used this model to predict the values at time t+1, 

and finally compared the prediction against the known values at time t+1, as shown in Fig. 1 and 2. 
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Fig. 1: Training a Model for time t, using the feature values from previous time snapshots (lags) and the class values at 

time t. 

 
Fig. 2: Link Prediction for time t+1. 

We were able to measure the average performance of the VAR technique and SVM in 5 years, from Year 

6 (2009) to Year 10 (2013). The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) was 

used to measure the performance of the predictive models. In the Receiver Operating Characteristic (ROC) 

Curve, the x-axis corresponds to the False Positive Rate (FPR) and the y-axis corresponds to the True 

Positive Rate (TPR). In our context, positives correspond to links while negatives correspond to no links. 

Note that the AUC of a perfect model is 1, while a random model is expected to have an AUC of 0.5. 

3.4. Enhanced Weighted Network  

 
Fig. 3: Link Prediction for time t+1. 

To enhance link prediction with the weighted network, for VAR, we extended the VAR formula to 

incorporate the unweighted network components and for SVM, we added more features to incorporate the 

unweighted network feature set, as illustrated in Fig. 3. We then used AUC-ROC to compare the 

performances. 

4. Results and Discussion 

4.1. Weighted Compared to Unweighted Network 

The performance of both VAR and SVM was consistently lower in the weighted network than in the 

corresponding unweighted network, as shown in Fig. 4. This was initially a bit surprising since the weighted 

network contained information on relative link strengths, whereas the unweighted networks only indicated 

the presence of absence of links. However, as will be discussed later, the true positive rate is affected by the 

use of this information on relative link strengths. 

4.2. Enhancement of the Weighted Network 

An inspection of the results for both VAR and SVM, however, would reveal that the performance of 
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these models in the enhanced weighted network is still lower than that in the unweighted network, as shown 

in Fig. 6. To analyze the performance loss in weighted networks, we examined the predicted values that are 

used as the input to compute for the AUC-ROC.  

For our analysis, we examined the results for SVM with lag 2 in unweighted and weighted networks in 

Year 3. In this time snapshot, the number of positive links is 2235. The ideal case is for all positive links to 

have higher predicted (link strength) values than all of the negative links. In this way, setting the threshold to 

the minimum among the predicted values for positive links will give a prediction accuracy of 100%, with no 

false positives and no false negatives.  

Fig. 4: Comparison of VAR and SVM in the unweighted and weighted networks. 

Fig. 5: Comparison of VAR and SVM in the weighted and enhanced weighted network. 

Fig. 6: Comparison of VAR and SVM in unweighted and enhanced weighted networks. 

When the predictions were sorted in increasing predicted link strength values and the last 5000 entries 

were examined, we observed that the SVM model for the weighted network was only able to correctly 

capture 798 of the positive links, while for the unweighted network this number was higher at 855 (refer to 

Fig. 7 for a visualization of the sorted ranking of the positive links). This means that if this window is 

considered as the set of positive links, and everything outside the window as the set of negative links, then 

the weighted network has lower true positives and lower true negatives than the corresponding unweighted 
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network. This explains why the AUC is lower. This also indicates that using the relative strengths of the 

links makes it more difficult to correctly predict future actual links because the metrics used may exaggerate 

the negative link metric values to the point that they may overtake some of the actual positive links. 

5. Conclusion 

In this study, we were able to observe that there was a performance loss for both VAR and SVM when 

the weighted network is used over the unweighted network. By incorporating features from the unweighted 

network to the weighted network, we were able to improve the performance of VAR and SVM. However, 

the results were still lower than in the unweighted network. We identified that the number of true positives 

(and true negatives) was higher in the unweighted network and lower for the weighted network and this has 

caused a lower AUC for the weighted network. To develop a better understanding of the impact of weighted 

networks in link prediction, we recommend the use of a parameter a that controls the influence of the link 

weights similar to previous works. Furthermore, we intend to compare the performance of both VAR and 

SVM for the prediction of new links in unweighted and weighted networks. 

 

 

Fig 7: Ideal Case, Predicted Unweighted, and Predicted Weighted for ranked predicted values. This is sorted in 

increasing predicted values. The block dots represent actual positive links and the uncolored dots are the actual negative 

links.  
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