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Abstract. Message propagation algorithms are very effective in finding satisfying assignments for random 

SAT instances, and hard region become narrower. However, message propagation algorithms do not always 

converge for graphs with cycles. Unfortunately, rigorous theory proof of this phenomenon is still lacking. 

Warning Propagation algorithm is the most basic message propagation algorithm, we analyses convergence 

of the warning propagation algorithm, and gives the conditions for convergence. 
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1. Introduction 

Satisfiability decision problem (SAT problem) refers to: given a Conjunction Normal Form (CNF) F , 

whether there exists a truth-values assignment that can make F  true. Clause length is k for the SAT problem 

is called the k-SAT problem, when 3k  , the k-SAT problem is the famous NP-complete problem. Making 

NP completeness of SAT as seeds, and by the transforming of polynomial simplification, it has been found 

that many of the combinatorial optimization problems with certain characteristics ,the SAT problem with 

some constraint condition is still the NP-complete problem [1, 2], among them, the 3-SAT problem is a classic 

and basic NP complete problem. 

The NP-completeness of SAT problem shows that the SAT problem cannot be solved intuitively in 

polynomial time. However, this problem cannot be avoided in practical applications. If we do not consider 

all the NP classes, and only consider the decision problem in certain special classes, it can be solved in 

polynomial time (even linear regression time). Such as the 2-CNF formulas, the Horn formulas, the CNF 

formulas with limiting some parameters etc. Intuitively, the solution time of the general SAT problem is 

exponential time. However, in practical applications, not every CNF problem needs exponential time. In the 

study of the phase transition phenomena of SAT problem, statistical phenomenon shows that there is a kind 

of critical phenomenon between satisfiability and unsatisfiability. For 3-CNF, the value of clauses in the 

formula and variable element number ratio is an important parameter, when the formula of the parameters in 

4.25 nearby, formula satisfiability decision is indeed very difficult. However, when the formula of this 

parameter is far away from 4.25, the judgment of formula satisfiability may be in polynomial time completed 

[1]. Although the SAT problem is NP-complete, the statistics show that the hard NP class is not large 

proportion. It is proved that the approximation algorithm and the stochastic algorithm are reasonable in many 

practical applications. The phase transition of SAT problem has further promoted the research and 

application of probability method in SAT problem. 

Since the birth of the DPLL algorithm for solving the SAT problem, people have designed a lot of 

excellent algorithms for SAT. Such as Zchaff algorithm [3], introduces strategies of conflict learning and two 

observation variables of Boolean Constraint Propagation (BCP) and other strategies, which have made a 

great breakthrough on DPLL algorithm. According to the phase change phenomena and statistical physics 
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theory and method, a lot of excellent probability algorithm and approximation algorithm are designed. Such 

as Huang Wenqi et al proposed the quasi-physical and quasi-human algorithm [4], some European scholars 

proposed the information propagation algorithm [5], and so on. For example, warning propagation(WP) 

algorithm [5] is a basic algorithm for information propagation, which can effectively solve the problem of 

the random 3-SAT instance when 3.50a  ; Belief propagation (BP) algorithm is effective when 3.95a  ; 

Survey propagation (SP) algorithm can extend the effective 3-SAT regional to 4.26a   [5,6]； SP algorithm 

is the most effective information propagation algorithm. 

Although the information propagation algorithm provides a very powerful tool to solve the SAT problem, 

there are still two problems need to be deeply studied in theory: 

1) Whether the information propagation algorithm is convergent; 

2) If the information propagation algorithm is convergent, whether the result is the effective 

approximation of the probability distribution of the variable edge.  If the information propagation program 

does not converge, the algorithm is invalid. 

Some research results have been obtained in the theoretical analysis of the convergence of the 

information propagation algorithm at present. For example, [7] analyzes the convergent of instance of factor 

diagram of information propagation algorithm, which the graph structure consists of a ring. It indicates that 

the information propagation algorithm has convergence, and the obtained result is an effective approximation 

for the distribution of the variables. In the literature [8] shows that the information propagation algorithm is 

able to converge correctly to the Gauss graph model with arbitrary structure. Tatikonda and Jordan analyzes 

the relationship between the uniqueness of the Gibbs measure sequence based on the computation tree and 

the convergence of the BP algorithm, and derive a sufficient condition of the BP algorithm for convergence 

[9]. Using the uniqueness of the Bethe free energy minimum value, Heskes gives the BP algorithm a 

effective condition with the only fixed point, and analyze the relationship of the free energy function 

between the information propagation algorithm and statistical physics. He points out the sufficient conditions 

for the BP algorithm convergence to the unique fixed point, however the theoretical analysis of the 

convergence of the information propagation algorithm hasn’t done[10]. According to the characteristic of the 

information renewal function, some researchers have given some sufficient conditions for convergence of the 

information propagation algorithm by using the function of contraction mapping principle. For example, 

using the BP algorithm update function, Ihler obtains the boundary of the transfer error information, and 

gives a  sufficient condition for convergence of information propagation algorithm taking advantage of the 

error information boundary [11]. Using vector space information update function of the compression 

mapping principle, Mooij and Kappen derive the sufficient conditions for the BP algorithm convergence, and 

point out that if the coefficient matrix spectral radius of the update function strictly less than 1,the BP 

algorithm is convergent [12]. Shi and Schonfeld et al. get a more compact boundary on the error information 

transmission, study the dynamic behavior of the information propagation algorithm by using this bound, and 

give a sufficient condition for the convergence of the algorithm. [13]. BP algorithm convergence for the 

minimum cost network flow (MCF) is analyzed in the paper [14], the results show that in the sub polynomial 

time, the BP algorithm receives the optimal solution of the MCF problem, and the optimal solution is unique. 

At the same time, this paper also provides a simplified BP algorithm, which can give a fully polynomial-time 

randomized approximation scheme (FPRAS) for the MCF problem. Reference [15] gives a conditional 

probability of the BP algorithm convergence. The results show that BP algorithm can give the optimal 

solution of the maximum weight matching problem and the minimum cost network flow problem, and the 

times of algorithm iterations is polynomial bound on high probability. [16] Analyzes the complexity of BP 

algorithm and BP Stochastic (SBP) algorithm , message update complexity of SBP is lower an exponential 

level than BP algorithm. 

Propagation WP algorithm is the most basic information propagation algorithm, and the convergence analysis of 

WP algorithm is helpful to analyze the convergence of other information propagation algorithm. The convergence of the 

WP algorithm is analyzed in [17], which the main limitation is random satisfiability instances of the plant assignment 

model ,

plant

n pP , that is, given an assignment and randomly selected clause sets with probability 
p

of satisfied assignment 

to constitute instances. Specifically, in the model ,

plant

n pP , p is sufficiently large, whose essence is, at most, only one 
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assignment meet examples with high probability, WP algorithm convergence is proved by using this property, and the 

corresponding convergence of a conditional probability is given. In the literature [18], we have analyzed the 

convergence of the warning propagation algorithm in the 3-SAT instance, that is, when 21/8p n , the WP algorithm in 

the 3-CNF formula generated by the model ( , , )G n k p  is convergent with a high probability. 

It can be seen that the information propagation algorithm is convergent on the cases with some special 

properties or structure. Therefore, the theoretical analysis of the convergence of the information propagation 

algorithm is still not perfect. 

We draws lessons on the genetic algorithm convergence proof technique [19], which the message update 

process of the warning propagation algorithm is mapped to the state migration process of the Markov chain. 

Based the theory of Markov chain and the relevant conclusions in [19], we gives a probability condition of 

the warning propagation algorithm convergence. The experimental results show that the decision condition is 

valid. 

2. Warning Propagation Algorithm 

Set 1 2{ , , , }mF C C C as a CNF formula, which contains n variables 1 2, , , nx x x . The formula F can be 

represented by a bipartite graph ,( )X EG C , called a factor graph. The variable nodes set is {1,2, , }X n , 

the clause nodes set is 1 2{ , , , }mC C C C . The edges in G  are divided into two types: real edge and virtual 

edge. 

Real edge: ( , )iC j E  clause iC  containing positive literal
jx ;Virtual edge: ( , )iC j E   clause iC containing 

negative literal
jx ; ( ) :V a to indicate a variable set that appears in clause a ; ( ) :V a to indicate a variable set for 

positive literal that appears in clause a ; ( ) :V a to indicate a variable set for negative literal that appears in 

clause a ; ( ) \ : ( ) { }V a i V a i  ; ( ) :V j To indicate a set of clauses containing variable
jx , ( ) : ( ) ( )V j V j V j  ; 

( ) :V j To indicate a set of clauses that the variable
jx is positive; ( ) :V j To indicate a set of clauses that the 

variable jx is negative;
 

( ) \ : ( ) { }V j a V j a   

a

jJ is a identification parameter , if
jx a , then 1a

jJ   ; if
jx a  , then 1a

jJ  . On each side ( , )a i of the 

factor graph, we define the message transfer a iu   (also known as warning information) of the WP algorithm. 

a iu   represents the satisfiability of the clause a for variable ix value tendency . The WP algorithm iterative 

equation is as follows:

 

  ( )\( )\

( ) ( ( ( 1)))a b

a i j j b j

b V j aj V a i

u t J J u t 



                                                    (1)

 

t is the number of iterations, ( )x is the truncated function. If 0x  , then ( ) 0x  , else ( ) 1x  . If a  

contains only variables ix , then set 1a iu   . When the WP algorithm convergence, according to the fixed 

variable of warning information ix to assign.

 

 
*

( )

b

i i b i

b V i

H J u 



  
                                                                    

 (2) 

If 0iH  , then 1ix  ; if 0iH  , then 0ix  ; else ix is temporarily not assigned. Generally, (1) can be 

written as follows:

 
( )\ ( )\ ( )\

( ) ( ( ( 1) ( 1)))a

a i j b j b j

j V a i b V j a b V j a

u t J u t u t
 

  

  

    
                                 

(3) 

( )\ ( )\

( 1) ( 1)j a b j b j

b V j a b V j a

h u t u t
 

  

 

                                                        (4) 

Named
j ah 

 as the cavity domain. If the variable
jx  is only in a , then set 0j ah   . The WP algorithm for 

3-CNF formula F is as follow: 

Warning Propagation (3-CNF formula F ) 

1. Construct the corresponding factor graph ( )G F ; 

2. Random assignment 1 or 0 for all message edges ( 0)a iu t   of the factor graph; 

3. Repeat the following procedure, until the algorithm converges (We also set the maximum iterative 

step maxt to force algorithm end): 

3.1 Random permutation edges of ( )G F ; 
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3.2 According to random edges sequence, using (1) to update message a iu  ; 

4 according to
iH to calculate the partial assignment , simplify the formula F ; 

5 return ; 

WP algorithm convergence refers to the n-th algorithm iterative information ( )a iu t  and the (n-1)-th 

information ( 1)a iu t  is consistent. The fixed point of Warning information is obtained when the algorithm is 

convergent, and determine the partial variable assignment furthermore, return the partial assignment ; 

otherwise, the algorithm is not convergent, and return fail. It is obvious that the algorithm convergence plays 

the key role on the performance. A conclusion is as follow: 

Theorem 1[5]: If the factor graph corresponding to the formula is a tree structure, the WP algorithm is 

convergent. 

However, WP algorithm does not always be convergent if the factor graph instance is a ring graph 

structure. At present, the convergence analysis of the algorithm is still not perfect. Therefore, it is necessary 

to analyze the WP algorithm convergence. 

3. A Probability Condition for the Convergence of the Warning Propagation 
Algorithm 

In the WP algorithm, the message values is relaxed from {0,1} to [0,1], and the convergence of the 

algorithm is analyzed by using the property of the function. There are the following conclusions: 

Theorem 2: Let f has a finite fixed point,  is a continuous function, which is satisfied 

( ) ( ) ( ( ))x f x x f x    , then f is convergent. 

Proof: set 
0( )j j N  is the finite fixed point in theV about f . 

0{ :|| || } ( )j jM x V x j N     

                                                          

(5) 

Let  sufficiently small, when
jx M , 0( ) ( , )kf x M k j k N   . Using absurdity to prove. Assume that 

f  does not converge, then ( )nf x will have unlimited times to fall into the complement M  of 
0

1

N

j

j

M M


 .So 

there is a limit point of z M of ( )nf x . And because ( ) ( ( ))z f z  , by  continuity, 0  , 

{ :|| || }M y V y z      . 

( ) ( ( )) max ( ( ))
y M

z f M f y  


                                                              (6) 

Thus, 2( ) ( ( )) ( ( ))z f M f M     , however z is the limit point of ( )nf x , it must be fall in ( )k

k

f M 

 (contradiction). So, f is convergent. 

Let F is a CNF formula, whose set of sequences of factor graph edge is { : ( , ) }D a i a i E   , warning 

messages a iu  on each side a i is to be updated by (1). Noticed that warning information is {0,1}a iu   , we 

suppose message update of WP algorithm is performed in parallel, iteration message vector is 
| |( , , ) {0,1}D

a i b ju u u V    . u is considered as a state, 0u is the initial state, and tu  is the t state by t steps 

iteration . 

Theorem 3: The message iterative process of the WP algorithm is a finite state Markov chain. 

Proof: Let { : 0}nX n   as a column of discrete random variables, the entire discrete value marked with 

S V , S is the state space, which is limited. 0 0X u indicates the initial iterative state of the warning 

propagation algorithm, n nX u indicates the state by n steps iteration, set :f V V ,for arbitrary u V , the 

message update equation (1) can be represented components form ( )a i

a if u u

 .Parallel update of WP 

algorithm is described as follow : 

( 1) ( ( ))X n f X n 

                                                                     

(7) 

Therefore, 1nX   is only relevant with nX . Apparently, the sequence { : 0}nX n  constitutes a finite state 

Markov chain on S .According to Theorem 3, we can use correlation theories of Markov chain to study the 

WP algorithm convergence. 

,1 ,2 ,| |( , , , )i i i i Ds s s s S  and 
,1 ,2 ,| |( , , , )j j j j Ds s s s S 

 
are the states set. The distance between the two 

iterative information is defined as 
| |

, ,

1

( , ) | |
D

i j i k j k

k

d s s s s


  . For any integer 0t  ,  
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If the distance between t iteration information ts and 1t  iteration information 1ts  is 1( , ) 0t td s s   ,then the 

WP algorithm convergence. Defining a collection B S : for any ( )X n B , there is ( ( ), ( 1)) 0d X n X n  ,we 

call B as the fixed point set of WP algorithm . 

Pr( ( 1) / ( ) )B

n X n B X n B                                                      (8) 

Pr( ( 1) / ( ) )B

n X n B X n B                                                       (9) 

Theorems 4:If B

n , B

n meet: 

(1) 
1

(1 )B

n

n






   ; (2) lim 0
1

B

n

Bn
n







. 

Then the WP algorithm is high probability convergent . 

lim Pr( ( ) ) 1
n

X n B


                                                               (10) 

Proof: Set 0 ( ) Pr( ( ) )P n X n B  , according to the Bayesian formula: 

0

0

( 1) Pr( ( 1) )

Pr( ( 1) / ( ) )

Pr( ( ) )

Pr( ( 1) / ( ) )

Pr( ( ) )

( )B B

n n

P n X n B

X n B X n B

X n B

X n B X n B

X n B

P n 

    

     

  

    

  

 
                                      (11) 

By condition (2), for any 0  , there exists 1N , when 1n N  ,there is 

21

B

n

B

n

 





                                                                        

(12) 

0 0

0 0

( 1) ( )
2 2

( 1) ( )

0

B

n

B B

n n

P n P n

P n P n

 


 

   
      

   

   



                                                          (13) 

thereby 

 0 0( 1) ( )
2 2

B

nP n P n
 


 

    
 

                                                           (14) 

By using the recursive method 

0 0

1

( 1) ( )
2 2

n
B

n

k

P n P n
 




 
    

 
                                                           (15) 

The condition (1) is equivalent to
1

0
n

B

n

k




 , then exists 2N , when 2n N , 
1 2

n
B

k

k






 ,then 1 2max( , )n N N , 

when 1 2max( , )n N N , 0 ( 1)P n   .According to arbitrary nature of  ,we can get following results: 

0limPr( ( ) ) lim ( ) 0
n n

X n B P n
 

    

Thereby 

lim Pr( ( ) ) 1
n

X n B


  . 

4. Numerical Experiments and Analysis 

WP algorithm to solve the satisfiability problem is more effective. But WP algorithm may not converge 

to the instance of the factor graph with ring structure. The experimental results show that the WP algorithm 
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cannot converge in random 3-SAT instances ( , , )G n k m on condition 3.91a  , and can’t give the effective 

solution of the problem. In the numerical experiments, we use the model ( , , )G n k m to generate three different 

scale random 3-SAT instances set. In the WP algorithm, the maximum number of iterations is 3

max 10t  . 

When the problem scale is 20n  , the convergence of the WP algorithm in the random 3-SAT instance 

set ( , , )G n k m  generated is shown in Fig. 1. It shows that the probability of the WP algorithm convergence 

changes with the change of the constraint parameter /a m n .Each data point in the graph is composed of 

1000 random instances generated by the model ( , , )G n k m . When the parameter a increases to 3.91, WP 

algorithm is changed from the convergence to not convergent. When the parameter 3.91a  , the WP 

algorithm is convergent with high probability. We know that the structure of factor graphs directly affects the 

convergence of WP algorithm. 
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Fig. 1: Problem scale is 20n  , the convergence of the WP algorithm on random instances of the model ( , , )G n k m . 
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Fig. 2: Problem scale is 40n  , the convergence of the WP algorithm on random instances of the model ( , , )G n k m  
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Fig. 3: Problem scale is 60n  ,the convergence of the WP algorithm on random instances of the model ( , , )G n k m  

In fact, when the parameters 3.91a  , the random instances by ( , , )G n k m generating are basically in the 

hard solution region and more difficult to solve, and the instance structure of the factor diagram is more 

complex. As a result, the WP algorithm does not converge. Fig. 2 and Fig. 3 show respectively the 

convergence of the WP algorithm on scale 40n   and 60n   of ( , , )G n k m instance set. As the scale n of the 

problem increases, the probability of WP algorithm convergence on the instance ( , , )G n k m
 tend to a stable 

value. As shown in fig 2 and fig3. The convergence of WP algorithm has a mutation at the constraint 

parameter 3.91a  , and the probability curve of convergence almost unchanged with the n increase. The 
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experimental results show that the convergence of the algorithm is independent of the scale n of the problem. 

In this convergent region, the validity of the conclusion in Theorem 4 is explained from the probability. 

5. Ending 

The convergence of WP algorithm is analyzed in this paper. By mapping the iterative process of the WP 

algorithm to the state transfer process of Markov chain, and using the properties of stable distribution of 

Markov chain, we give the conditions for convergence. Further work is that the study of belief propagation 

algorithm and survey propagation algorithm convergence based on the WP algorithm convergence analysis 

method, gives a sufficient condition for the algorithm convergence and strict theoretical proof. 
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