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Abstract. The study on the use of association rules for the purpose of classification gave rise to a new field 

known as Associative Classification (AC). The process used to generate association rules is exponential by 

nature; thus in AC, researcher focused on the reduction of redundant rules via rules pruning and rules ranking 

techniques. The removal of rules however could negatively affect accuracy. In this paper, we radically store 

most of the rules in a condensed form utilizing automata. The automata offsets critical need for rules pruning 

and ranking. Our new structure is used for classification. Experimental results show that the accuracy of our 

automata based technique is significantly improved compare to the existing state-of-the-art algorithms which 

includes J48, AODE, BayesNet and FT etc. The analysis also shows that our automata based associative 

classification technique is efficient by means of computational time and space utilization. 
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1. Introduction 

Recent studies of association rules (AR) show promising use of AR for classification. After its 

introduction in 1997 [1], algorithms developed in this family include CBA[1,2], CMAR[3],MCAR[4], 

CPAR[5], MAC[6] and almost all consist of three basic steps, specifically: (I) To generate class-association 

rules, (II) To prune and rank rules, and (III) To build and evaluate the classifier.  

In this paper, we argue for an efficient structure to incorporate association rules into a classifier with 

experimental results comparable to state-of-the-art algorithms includes J48, AODE, BayesNet, Jrip and FT 

etc. The rest of the paper is organised as follows: In Section 2, we report related work and needed 

information to understand and appreciate AC; in Section 3 our main algorithm and logic in merging and 

building an efficient structure. This is followed by experimental results and analysis of the algorithm in 

Section 4. The last Section 5 concludes the paper with future research directions. 

2. Literature Review 

Associative Classification [1] is an integration of two major techniques in data mining – Association 

Rules Mining and Classification. In 1998 [7] showed that such an integration is able to increase accuracy of 

the existing classifiers. In these, it is a stronger classifier as compared to traditional algorithms. A number of 

researchers have since, conducted various research on associative classifier. Among these, [8] reviewed and 

summarised that association rules type of classification can produce more accurate classifier compare to the 

traditional approaches such as decision tree and rule induction. In addition, author highlighted a number of 

research directions for associative classification which includes pruning for rules while maintaining the 

completeness of solutions. The latter is an important issue addressed in this research.  

Importantly, rule pruning is another critical research topic as association rules mining typically output 

huge number of rules. Baralis [9] proposed to prune the association rules discovered by rule ranking – 
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Comparing the confidence and support values of the longest rules (term as compact rules). Whereas,[10] 

highlighted five popular rule pruning approaches. (I) Chi-squared test to test if a rule antecedent is correlated 

with its consequence based on statistics (II) Redundant rule pruning based on confidence value (III) 

Redundant rule pruning based on coverage value (IV) error estimation based on estimated error of a new rule 

in order to replace the existing rule (V) Redundant rule pruning based on comparison between the support 

and confidence values. Although the smaller number of rules in a classifier is advantageous in the context of 

speed but it is less appreciated for accuracy with an additional computational overhead to the classifier. 

Associative Classification Using Automata 

In this article, we propose a unique algorithm that constructs Finite Automata (FA) from CARs. The 

structure could later be scored for classifying (test) data. Algorithm 1 summarizes the procedure of FA 

construction from CARs for AAC. 

2.1. Algorithm 

In FA construction, the key part is that of transition function (δ). It defines the rules of movement from 

one state to another. The general form of transition function is δ = Q × Σ → Q which means that from any 

state (from Q) using any input symbol (from Σ) we can move to any state (in Q). CARs in Table 1 represent 

δ for AAC. 

 
Algorithm 1: Creation of Finite Automata from Class Association Rules 
Name:  FA Construction  

Data:  Set of (class-) association rules ruleSet 

Result:  Set of Automata 

1: create Automata with rule-1 from ruleSet and increment Level 

2: while ruleSet, φ do 

 3: read rule one by one 

 4:   if no conflict (ruleSet, set FA) then 

 5:  insert into Automata 

 6: else 

 7: add rule to conflictRuleSet 

 8:   end if  

9: end while  

10: Update ruleSet = conflictRuleSet 

11: Call FA Construction with updated ruleSet 

2.2. Mapping of CARs 

In this section and throughout the rest of the paper, we will refer to Table 1 as our working example. 

Table 1 represents CARs for IRIS2D dataset from UCI repository [11]. The dataset is discretised using 

WEKA 3.7.10 unsupervised discretiser. The CARs are generated using Weka’s Apriori Algorithms with 

default parameter setting. There are a total of 9 rules; each row represents one rule. Every row consists of, 

specifically: (i) a rule number (Column R No), (ii) attributes (i.e. columns PL (Patel Length) and PW (Patel 

Width)) and (iii) class label (column Class). Each cell contains the value for an attribute. For example, “min-

2.45” is the value of Patel Length for rules no. 1 and 3.  

Table 1: CARs for IRIS2D dataset, generated using Weka 3.7.10 

R No (PL)  (PW)   Class R No (PL)  (PW)   Class 

1 min-2.45  Iris-Setosa - C1 6 2.45-4.75  Iris-versicolor - C3 

2  min-0.8 Iris-Setosa - C1 7 2.45-4.75 0.8-1.75 Iris-versicolor - C3 

3 min-2.45 min-0.8 Iris-Setosa - C1 8  0.8-1.75 Iris-versicolor - C3 

4  1.75-max Iris-Virginica - C2 9 4.75-max  Iris-Virginica - C2 

5 4.75-max 1.75-max Iris-Virginica - C2     

In order to represent Table 1 as FA, we performed a following mapping: The CARs are fed to the 

algorithm as δ for FA = {Q, Σ, δ, q0, F} where, specifically: Q is the union of set of attributes and Distinct 

Class labels from datasets; Σ is the collection of distinct values of all attributes; q0 is the start state and can 

be any attribute from set of Q − F. Finally F, set of final states, is the set of distinct class labels. The 

following illustration explains how CARs are incorporated into an automata. 
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Illustration 1: This example shows how Table 1 is represented in our AAC.  

All rules in Table 1 represent δ. These rules, actually, provide the mechanism of movement between different states of FA.  

The set of states: 

 Q = {PL, PW, C1, C2 and C3} (Collection of all attributes and distinct class labels). 

The input symbols:  

 Σ= {min − 2.45, 2.45 − 4.75, 4.75 − max, min − 0.8, 0.8 − 1.75, 1.75 − max} (set of distinct values of all attributes.)  

 q0 can be any attribute that starts a rule; e.g. for rule 1 & 3 q0 is ‘PL’ (Pedal Length), while for rules 2 & 4 etc., it is ‘PW’ (Pedal 

Width). 

Lastly, the set of final states:  

 F = {C1, C2, C3} (distinct class labels). 

Algorithm 1 adds rules to the existing FAs one by one. In the case of distinct rule, it will become a 

candidate for a new automaton. The process continues until there are no more rules in the rule set. The step 

wise process is illustrated in Figures 1-3. When the algorithm reads rule 2 from Table 1, it starts from PW 

(anew) which is different from the start state of FA0, thus resulted in a distinct rule in FA (denoted as FA1). 

This is shown in Figure 2. After reading rule 3 from Table 1, the algorithm will compare it with FA0. Since 

there is no distinction, FA0 will absorb rule 3 and the structure of FA0 changed to its revised form as shown 

in Figure 3. 

 

Fig. 1: FA0 after reading rule 1 from Table 1. 

 

Fig. 2: FA1 after reading rule 2 from Table 1. 

 

Fig. 3: FA0 after reading rule 3 from Table 1. 

3. Results and Discussion 

This section provides the experimental results of AAC and its comparison with the existing state-of-the-

art classifiers. AAC is implemented using Java version 1.7 on Windows 8.1 running over 64bit core i5 

2.30GHz machine with 8GB of memory. The results for other classifiers are generated using Weka 3.7.10 on 

the same machine. In order to make the regeneration of result easier, all experiments were conducted with 

default parameters. Further, as classification techniques need discrete data to work upon, therefore, the 

numeric dataset were discretised using unsupervised discretiser of Weka. 

For the purpose of comparison, we randomly choose three datasets from the most commonly appearing 

dataset in literature, including: [3, 4, 5, 6]. All datasets are available online at UCI Machine Learning 

Repository [11].  

Table 2 shows a comparison of AAC and Naive Bayes family of classifiers. The results based on 10-fold 

cross validation show that AAC outperforms the Naive Bayesian all family members in two datasets with a 

reasonable difference. The result also shows that in most cases the NB based algorithms results in same 

accuracy. 

Table 2: AAC Comparison with NB Classifiers 

S 

No 

Classifier balance-

scale 

contact-

lenses 

iris2D 

1 AAC 73.61 91.67 97.78 

2 AODE 89.45 68.33 96.67 

3 BayesNet 91.36 71.67 96.67 

4 NaiveBayes 91.36 71.67 96.67 

5 NaiveBayes_ 

Updatable 

91.36 71.67 96.67 
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Similarly, the AAC comparison with tree based algorithm is shown in Table 3. AAC outperform the tree 

based algorithms in two datasets, namely; a) Contact Lens and b) IRIS2D.  

Table 3: AAC Comparison with Tree Based Classifiers 

S No Classifier balance-scale contact-lenses iris2D 

1 AAC 73.61 91.67 97.78 

2 ID3 38.09 71.67 94.00 

3 J48 64.48 81.67 96.00 

4 FT 91.99 68.33 96.67 

5 Jrip 70.55 75.00 93.33 

 

Our new algorithm outperforms some of the classifiers. The reason for a lower performance of balance 

scale dataset could be due to the limitation of CARs generation on our system while the reason for the high 

accuracy of AAC, over other techniques, is replacement of pruning with merging. Fundamentally, our AAC 

technique avoids pruning it merges the similar rules which results in a smaller rule set. That helps to improve 

the efficiency as well as accuracy. 

4. Conclusion 

In this research, we have designed an automata based associative classifier (termed as AAC) based on 

our hypothesis that a reduced number of class-association rules or production rules in most other types of 

classifiers, reduce the accuracy for classification. Through experiments, we show that it is possible to obtain 

comparable even better results without removing the rules. The use of automata is appropriate to record and 

summarise these rules. It preserves both accuracy without much computational overhead.  
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