
Automatic Analysis of Malware Behavior with SVM

Xiang Jing, Biao Qi, Jianguo Jiang, Bin Lv

Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

Abstract. Malicious binaries prevail in the networked systems, such as computer viruses, Trojan horses,

and Internet worms cause a brief threat to the security of computer networks. At the beginning of analyzing

malware, static malware analysis methods employ byte-level content to detect malware binaries; however,

polymorphism and obfuscation make static malware analysis methods be out of function. Dynamic analysis

is more suitable than static analysis to recognize malware for monitoring malware behaviors which are vital

to identify and difficult to conceal. Actually homogeneous malware families share similar behavioral features

and heterogeneous malware families have different characteristics. We propose a method to classify malware

families based behavior. Our method includes two parts: (1) we transform raw malware data into vector

space using bag of word model. (2) We employ support vector machine (SVM) to classify malware data into

correspondent families. The result shows that the accuracy of algorithm is over 90%.

Keywords: dynamic analysis, bag of word model, SVM.

1. Introduction

Various malware such as computer viruses, Trojan horses, and Internet worms poses a brief threat to the

security of computer networks, affects the normal operation of the Internet. Moreover, proliferation and

deformation of malware make the computer network at risk seriously [1]. Keeping antivirus products up-to-

data continually seems to ensure security of computer network, however, Profit-driven persons or firms will

make computer viruses updates faster than anti-virus software. Besides, malware writers usually make their

efforts to stop detection by hiding techniques, tens of thousands of known malware variants from some

malware family appear, and this leaves professional safety personnel a more daunting work to identify

malware. So detecting and recognizing malware are still particularly complex and important.

Before anti-malware software relied on byte-content analysis [2] to confront malware. But this was

easily defeated by malware writers by using obfuscation and polymorphism. And other static analysis

methods were so [3]. Dynamic analysis of malware binaries based on behaviors is more successful compared

to static analysis to distinguish malware, for the reason that malware shares intrinsic dangerous operational

characteristics. That is also the reason why so many security researchers pay more attention to dynamic

analysis.

In fact judging a computer file whether it is malware or not is difficult for some procedures, moreover,

we intend to point out it belongs to which malware families. First of all, we need to run it in a controlled

environment such as virtual machine, thus we can collect relevant data and then must gain some important

behaviors such as open file or move file. Recently a general approach to complete it is make use of

CWSandbox to record all system-level behavior by monitoring the performed system calls, in this way a

behavior report created concludes the whole operational view about the file [4]. More precisely, a large

amount of malware was massively produced by machines, so nearly every malware belongs to different

malware families, and we can classify majority malware into corresponding families by analysis its dynamic

behavioural essence.

 Corresponding author. Tel.: + 8618911017537.

 E-mail address: lvbin@iie.ac.cn.

110110

ISBN 978-981-11-0008-6

Proceedings of 2016 6th International Workshop on Computer Science and Engineering

(WCSE 2016)

Tokyo, Japan, 17-19 June, 2016, pp. 110-114

admin
打字机文本
doi: 10.18178/wcse.2016.06.019

Our main work in this paper is to employ a popular machine learning method to classify malware into

relevant malware families. The difficulties for us include data representations and algorithm analysis, more

specifically, we must transform XML-based forms created by CWSandbox into vector space for our

algorithms are based on distance metric and numeric analysis and non-numeric data such as system call

instructions and other strings can’t make a comparison to submit to the ideology that samples in same class

own smaller distances while in different class have bigger distances.

This paper is organized as follows: related work is introduced in Section 2, and Section 3 briefly

elaborates our approach. Our experiments are presented in Section 4, finally, we conclude our paper in

Section 5.

2. Related Work

In recent years, dynamic malware analysis based behaviors are more and more attracting people’s

attention. In 2008, Konrad proposed a supervised learning method to learn and classify malware based

behaviors, its prominent point was comprehensively expounding the whole analysis process from data

acquisition to classification explanations [5]. Bailey et al. firstly employed clustering algorithms to consider

program behavior of malware for identifying related samples [6]. Gu et al. correlate spatial-temporal

relations in botnet communication using [7]. To some extent, dynamic analysis based behaviors with

clustering algorithms can help find new malware families, and it is essential to tag new malware families to

fight them at early stage. Besides, we don’t know malware belongs to which families in the beginning; it

deserves to cluster malware binaries into different clusters. In addition, classification algorithms also play

effective roles in recognizing different malware, for the best posterior is obtained by training a training

patterns set, and they have a good generation performance. While classification methods need sample labels

compared to clustering methods [8]. Actually to deal with the increasing amount and diversity of malware,

the combination of dynamic analysis and machine learning techniques based statistic characters will be the

research focus, so many literatures have studied these in different scenarios [9], [10].

More specifically, there are two stages to process malware classification. Firstly we need to transform

XML analysis reports into a suitable and identifiable form. Philipp Trinius et.al. proposed an instruction set

for behavior-based analysis, in this way could change CWSandbox representations to a malware instruction

set by hashing process [11]. The design of the instruction set is various and vital. Secondly, we can choose

supervised or unsupervised machine learning if we get the above procedure, this have been many literatures

studied [12], [13].

3. Our Approach

After the introduction of the previous section, we can have a rough understanding of dynamic malware

analysis based behaviors. In this section we briefly expound our methodology. Firstly, we employ bag of

word model [14] to transform XML form analysis reports into vector space. The bag of word model has been

widely used in the field of text classification. Its main function is to convert a text sample to a vector and the

feature in the vector represents the number of corresponding word in the primitive text. In this way we

completely obtain a vector that can express equivalent XML file. Secondly, we employ linear LibSVM to

classify malware files [15]. Our algorithms are as follows in the process:

We need to introduce LibSVM exhaustively. LibSVM was a simple and practical software package

developed by Lin et al. [16]. It was mainly used to pattern classification and regression, and it supports

parameters optimization framework and cross validation. LibSVM is an achievement of SVM algorithm and

code optimization in practice. We then briefly recommend SVM algorithm. Because we obtain high

dimension data after data representation, we just attempt to linear SVM without kernel SVM [17]. We

mainly state binary classification here.

111111

Binary classification is frequently performed by using a real-valued function f: X ⊆ 𝑅𝑛 ⟼ 𝑅 in the

following way: x = (𝑥1, 𝑥2 , … , 𝑥𝑛)
T, will be assigned to the positive class, if f(x) > 0, and otherwise to

the negative. For f(x) is a linear function, we can write it as

f(x) = ω
T
x

+ b

As the Fig. 1 shows, from the start we gain malware analysis reports in XML form by CWSandbox, and

then we transform XML files into vector space by bag of word model. When we get numerical vectors

instead of malware, we can perform SVM to classify. It demonstrates our approach is feasible and effective

through some experiments.

Fig. 1: Malware classification process flow diagram.

4. Experiment

4.1. Data Processing

Malware analysis or classification is based on malware data to a great degree, for different data feeds

different algorithms, data is crucial. Especially in our case we should collect raw data using honey pot or

spam-trap, and employ CWSandbox to acquire XML analysis reports, but we emphasize our effective

approach. So we just make use of the XML file data in the literature [5], and the network link is

http://pi1.informatik.unimannheim.de/malheur. We need using numeric type data, so we just extract several

kinds of data and build new practical data set by the bag of word model as Table I.

Table I: Malware Dataset

Malware families name Data size Data Dimension

112112

 = ∑ 𝜔𝑖𝑥𝑖
𝑛
𝑖=1 + b

The primal model is

 min
1

2
(∥ ω ∥)2 + C ∑ ξi

𝑛
𝑖=1

 𝑠. 𝑡. y(𝜔Tx + b) ≥ 1 − 𝜉𝑖

 𝜉𝑖 ≥ 0; i = 1, 2, … , n

𝑠. 𝑡. ∑ 𝜔𝑖𝛼𝑖
𝑛
𝑖=1 =0

And the dual optimal problem is

 min
1

2
 ∑ 𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝑥𝑖𝑥𝑗 − ∑ 𝛼𝑖

𝑛
𝑖=1

𝑛
𝑖,𝑗=0

𝑠. 𝑡. ∑ 𝜔𝑖𝛼𝑖
𝑛
𝑖=1 =0

 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, 2, … , 𝑛

It is a quadratic programming and we can get decision function

 g(x) = sgn(𝜔T𝑥 + 𝑏)

 = sgn(∑ 𝛼𝑖𝑦𝑖𝑥𝑖 ∙ 𝑥𝑛
𝑖=1 + b)

ALLAPLE 300 85

BANCOS 48 85

LDPINCH 209 85

PODNUHA 300 85

ROTATOR 78 85

4.2. Experiment

In our whole operation, we perform two experiments, firstly we use all data to take part in training and

testing, and secondly we just make use of ALLAPLE, LDPINCH and PODNUHA to complete our

simulations. The experiments are conducted on a PC with Intel Core i7-410U (2.00GHz) and RAM 8.00GB

memory. The software is based on the LIBSVM-3.1 MATLAB Toolbox, which is available at

http://www.matlabsky.com/thread-17936-1-1.html. The experiments procedures are as following Fig. 2.

Through the foregoing management, we get numeric data, so we can extract training set, training labels and

testing set, testing labels, in addition, we need to normalize our data to (0,1), then reduce data dimensions by

95%, and lastly we employ LibSVM to train the optimal model for ten-fold cross validation. Besides, we set

the step size of grid search as 0.1, we perform our two experiments ten times and we use the average as the

final results.

Fig. 2: Experiment procedures.

4.3. Experiment Results and Analysis

The previous section illustrates our specific experiment procedures, and this section mainly demonstrates

our experiment results and analysis. We perform two experiments and the results show in the Table II.

Table II: Experiment Results

Malware Families Names ALLAPLE BANCOS LDPINCH PODNUHA ROTATOR Accuracy

Accuracy rate1(%) 92.95 56.67 82.4 97.44 63.83 86

Accuracy rate2(%) 88.57 # 95.45 89.47 # 90.23

In the first experiment, we perform the dataset training directly and the classification results of BANCOS

and ROTATOR are not good. The reason of that will be thought of class imbalance from the amount of the

data [18]. We get total accuracy of the first experiment according to the following formula:

In this paper, we apply a supervised machine learning method to classify malware families, our method

has two procedures: in the first process, we use bag of word model to transform XML form files obtained by

CWSandbox into vector space, and we get whole numerical type malware data; in the second process, we

employ SVM to train the optimal model and then test the testing samples, through experiment simulations, it

demonstrates our classification precision is up to 90.23%. However, this work just is our preliminary attempt

to malware analysis, and we hope that afterwards we can thoroughly connect malware features to actual and

specific behaviors and furthermore, we can recognize attacks behaviors and objectives of malware. Those

will be our subsequent work.

5. Conclusion

113113

 Accuracy = ∑
𝑁𝑃𝑖

𝑁
𝑛
𝑖=1

N represents the total of samples and 𝑁𝑃𝑖 is the ith accuracy in the ith class sample. It stands for the

number of malware families. The total accuracy of the first experiment is 86%. In order to keep away from

class imbalance, we choose the ALLAPLE, LDPINCH and PODNUHA as the dataset, and we can get the

total precision up to 90.23%. It turns out our approach is effective and feasible.

In this paper, we apply a supervised machine learning method to classify malware families, our method

has two procedures, in the first process, we use bag of word model to transform XML form files obtained by

CWSandbox into vector space, and we get whole numerical type malware data; in the second process, we

employ LibSVM to train the optimal model and then test the testing samples, through experiment

simulations, it demonstrates our classification precision is up to 90.23%. We hope that afterwards we can

thoroughly connect malware features to actual and specific behaviors and furthermore, we can recognize

attacks behaviors and objectives of malware. Those will be our subsequent work.

6. References

[1] Microsoft, “Microsoft security intelligence report (sir),” Microsoft Corporation, Tech. Rep., 2009.

[2] M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida, “Malware phylogeny generation using permutations of

code,” Journal in Computer Virology, vol. 1, no. 1-2, pp. 13–23, 2005.

[3] M. Christodorescu and S. Jha, “Static analysis of executables to detect malicious patterns,” DTIC Document, Tech.

Rep., 2006.

[4] C. Willems, T. Holz, and F. Freiling, “CWSandbox: Towards automated dynamic binary analysis,” IEEE Security

and Privacy, vol. 5, no. 2, pp. 32–39, 2007.

[5] K. Rieck, T. Holz, C. Willems, P. D¨ussel, and P. Laskov, “Learning and classification of malware behavior,” in

Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 2008, pp. 108–125.

[6] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario, “Automated classification and

analysis of internet malware,” in Recent advances in intrusion detection. Springer, 2007, pp. 178–197.

[7] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting botnet command and control channels in network traffic,”

2008.

[8] M. R. Anderberg, Cluster Analysis for Applications: Probability and Mathematical Statistics: A Series of

Monographs and Textbooks. Academic press, 2014, vol. 19.

[9] K. Rieck, P. Trinius, C. Willems, and T. Holz, Automatic analysis of malware behavior using machine learning.

TU, Professoren der Fak. IV, 2009.

[10] F. Ahmed, H. Hameed, M. Z. Shafiq, and M. Farooq, “Using spatiotemporal information in api calls with machine

learning algorithms for malware detection,” in Proceedings of the 2nd ACM workshop on Security and artificial

intelligence. ACM, 2009, pp. 55–62.

[11] P. Trinius, C. Willems, T. Holz, and K. Rieck, “A malware instruction set for behavior-based analysis,” 2009.

[12] R. Gentleman and V. Carey, “Unsupervised machine learning,” in Bioconductor Case Studies. Springer, 2008, pp.

137–157.

[13] Y.-H. Wang, Y. Li, S.-L. Yang, and L. Yang, “Classification of substrates and inhibitors of p-glycoprotein using

unsupervised machine learning approach.” Journal of chemical information and modeling, vol. 45, no. 3, pp. 750–

757, 2005.

[14] C.-F. Tsai, “Bag-of-words representation in image annotation: A review,” ISRN Artificial Intelligence, vol. 2012,

2012.

[15] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector machines,” ACM Transactions on Intelligent

Systems and Technology (TIST), vol. 2, no. 3, p. 27, 2011.

[16] C. Chang and C. Lin, “Libsvm: a library for support vector machines (2001), software,” 2005.

[17] V. N. Vapnik and V. Vapnik, Statistical learning theory. Wiley New York, 1998, vol. 1.

[18] R. Longadge and S. Dongre, “Class imbalance problem in data mining review,” arXiv preprint arXiv: 1305.1707,

2013.

114114

