
Automatic Analysis of Malware Behavior with SVM 

Xiang Jing, Biao Qi, Jianguo Jiang, Bin Lv 

  

Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 

Abstract. Malicious binaries prevail in the networked systems, such as computer viruses, Trojan horses, 

and Internet worms cause a brief threat to the security of computer networks. At the beginning of analyzing 

malware, static malware analysis methods employ byte-level content to detect malware binaries; however, 

polymorphism and obfuscation make static malware analysis methods be out of function. Dynamic analysis 

is more suitable than static analysis to recognize malware for monitoring malware behaviors which are vital 

to identify and difficult to conceal. Actually homogeneous malware families share similar behavioral features 

and heterogeneous malware families have different characteristics. We propose a method to classify malware 

families based behavior. Our method includes two parts: (1) we transform raw malware data into vector 

space using bag of word model. (2) We employ support vector machine (SVM) to classify malware data into 

correspondent families. The result shows that the accuracy of algorithm is over 90%. 
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1. Introduction  

Various malware such as computer viruses, Trojan horses, and Internet worms poses a brief threat to the 

security of computer networks, affects the normal operation of the Internet. Moreover, proliferation and 

deformation of malware make the computer network at risk seriously [1]. Keeping antivirus products up-to-

data continually seems to ensure security of computer network, however, Profit-driven persons or firms will 

make computer viruses updates faster than anti-virus software. Besides, malware writers usually make their 

efforts to stop detection by hiding techniques, tens of thousands of known malware variants from some 

malware family appear, and this leaves professional safety personnel a more daunting work to identify 

malware. So detecting and recognizing malware are still particularly complex and important. 

Before anti-malware software relied on byte-content analysis [2] to confront malware. But this was 

easily defeated by malware writers by using obfuscation and polymorphism. And other static analysis 

methods were so [3]. Dynamic analysis of malware binaries based on behaviors is more successful compared 

to static analysis to distinguish malware, for the reason that malware shares intrinsic dangerous operational 

characteristics. That is also the reason why so many security researchers pay more attention to dynamic 

analysis. 

In fact judging a computer file whether it is malware or not is difficult for some procedures, moreover, 

we intend to point out it belongs to which malware families. First of all, we need to run it in a controlled 

environment such as virtual machine, thus we can collect relevant data and then must gain some important 

behaviors such as open file or move file. Recently a general approach to complete it is make use of 

CWSandbox to record all system-level behavior by monitoring the performed system calls, in this way a 

behavior report created concludes the whole operational view about the file [4]. More precisely, a large 

amount of malware was massively produced by machines, so nearly every malware belongs to different 

malware families, and we can classify majority malware into corresponding families by analysis its dynamic 

behavioural essence. 
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Our main work in this paper is to employ a popular machine learning method to classify malware into 

relevant malware families. The difficulties for us include data representations and algorithm analysis, more 

specifically, we must transform XML-based forms created by CWSandbox into vector space for our 

algorithms are based on distance metric and numeric analysis and non-numeric data such as system call 

instructions and other strings can’t make a comparison to submit to the ideology that samples in same class 

own smaller distances while in different class have bigger distances. 

This paper is organized as follows: related work is introduced in Section 2, and Section 3 briefly 

elaborates our approach. Our experiments are presented in Section 4, finally, we conclude our paper in 

Section 5. 

2. Related Work 

In recent years, dynamic malware analysis based behaviors are more and more attracting people’s 

attention. In 2008, Konrad proposed a supervised learning method to learn and classify malware based 

behaviors, its prominent point was comprehensively expounding the whole analysis process from data 

acquisition to classification explanations [5]. Bailey et al. firstly employed clustering algorithms to consider 

program behavior of malware for identifying related samples [6]. Gu et al. correlate spatial-temporal 

relations in botnet communication using [7]. To some extent, dynamic analysis based behaviors with 

clustering algorithms can help find new malware families, and it is essential to tag new malware families to 

fight them at early stage. Besides, we don’t know malware belongs to which families in the beginning; it 

deserves to cluster malware binaries into different clusters. In addition, classification algorithms also play 

effective roles in recognizing different malware, for the best posterior is obtained by training a training 

patterns set, and they have a good generation performance. While classification methods need sample labels 

compared to clustering methods [8]. Actually to deal with the increasing amount and diversity of malware, 

the combination of dynamic analysis and machine learning techniques based statistic characters will be the 

research focus, so many literatures have studied these in different scenarios [9], [10]. 

More specifically, there are two stages to process malware classification. Firstly we need to transform 

XML analysis reports into a suitable and identifiable form. Philipp Trinius et.al. proposed an instruction set 

for behavior-based analysis, in this way could change CWSandbox representations to a malware instruction 

set by hashing process [11]. The design of the instruction set is various and vital. Secondly, we can choose 

supervised or unsupervised machine learning if we get the above procedure, this have been many literatures 

studied [12], [13]. 

3. Our Approach 

After the introduction of the previous section, we can have a rough understanding of dynamic malware 

analysis based behaviors. In this section we briefly expound our methodology. Firstly, we employ bag of 

word model [14] to transform XML form analysis reports into vector space. The bag of word model has been 

widely used in the field of text classification. Its main function is to convert a text sample to a vector and the 

feature in the vector represents the number of corresponding word in the primitive text. In this way we 

completely obtain a vector that can express equivalent XML file. Secondly, we employ linear LibSVM to 

classify malware files [15]. Our algorithms are as follows in the process: 

We need to introduce LibSVM exhaustively. LibSVM was a simple and practical software package 

developed by Lin et al. [16]. It was mainly used to pattern classification and regression, and it supports 

parameters optimization framework and cross validation. LibSVM is an achievement of SVM algorithm and 

code optimization in practice. We then briefly recommend SVM algorithm. Because we obtain high 

dimension data after data representation, we just attempt to linear SVM without kernel SVM [17]. We 

mainly state binary classification here. 
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Binary classification is frequently performed by using a real-valued function f: X ⊆  𝑅𝑛 ⟼ 𝑅 in the 

following way: x = (𝑥1, 𝑥2 , … , 𝑥𝑛 )
T, will be assigned to the positive class, if f(x) > 0, and otherwise to 

the negative. For f(x) is a linear function, we can write it as 



f(x) = ω
T
x

 

+ b

 

 

 

 

 

 

 

 

 

 

 

As the Fig. 1 shows, from the start we gain malware analysis reports in XML form by CWSandbox, and 

then we transform XML files into vector space by bag of word model. When we get numerical vectors 

instead of malware, we can perform SVM to classify. It demonstrates our approach is feasible and effective 

through some experiments. 

 

 
Fig. 1: Malware classification process flow diagram. 

4. Experiment 

4.1. Data Processing 

Malware analysis or classification is based on malware data to a great degree, for different data feeds 

different algorithms, data is crucial. Especially in our case we should collect raw data using honey pot or 

spam-trap, and employ CWSandbox to acquire XML analysis reports, but we emphasize our effective 

approach. So we just make use of the XML file data in the literature [5], and the network link is 

http://pi1.informatik.unimannheim.de/malheur. We need using numeric type data, so we just extract several 

kinds of data and build new practical data set by the bag of word model as Table I. 

Table I: Malware Dataset 

Malware families name Data size Data Dimension 
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          = ∑ 𝜔𝑖𝑥𝑖
𝑛
𝑖=1 +  b

The primal model is

                                                                    min
1

2
(∥ ω ∥)2 +  C ∑ ξi

𝑛
𝑖=1  

                                                                    𝑠. 𝑡.  y(𝜔Tx + b) ≥ 1 − 𝜉𝑖

  𝜉𝑖 ≥ 0; i = 1, 2, … , n

𝑠. 𝑡.  ∑ 𝜔𝑖𝛼𝑖
𝑛
𝑖=1 =0

And the dual optimal problem is 

                                                                     min
1

2
 ∑ 𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝑥𝑖𝑥𝑗 − ∑ 𝛼𝑖

𝑛
𝑖=1

𝑛
𝑖,𝑗=0

𝑠. 𝑡.  ∑ 𝜔𝑖𝛼𝑖
𝑛
𝑖=1 =0

                                                                     0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, 2, … , 𝑛

It is a quadratic programming and we can get decision function

                                                                   g(x) = sgn(𝜔T𝑥 + 𝑏)

                                                                          = sgn(∑ 𝛼𝑖𝑦𝑖𝑥𝑖  ∙  𝑥𝑛
𝑖=1  + b)



ALLAPLE 300 85 

BANCOS 48 85 

LDPINCH 209 85 

PODNUHA 300 85 

ROTATOR 78 85 

4.2. Experiment 

In our whole operation, we perform two experiments, firstly we use all data to take part in training and 

testing, and secondly we just make use of ALLAPLE, LDPINCH and PODNUHA to complete our 

simulations. The experiments are conducted on a PC with Intel Core i7-410U (2.00GHz) and RAM 8.00GB 

memory. The software is based on the LIBSVM-3.1 MATLAB Toolbox, which is available at 

http://www.matlabsky.com/thread-17936-1-1.html. The experiments procedures are as following Fig. 2. 

Through the foregoing management, we get numeric data, so we can extract training set, training labels and 

testing set, testing labels, in addition, we need to normalize our data to (0,1), then reduce data dimensions by 

95%, and lastly we employ LibSVM to train the optimal model for ten-fold cross validation. Besides, we set 

the step size of grid search as 0.1, we perform our two experiments ten times and we use the average as the 

final results.  

 

 
Fig. 2: Experiment procedures. 

4.3. Experiment Results and Analysis  

The previous section illustrates our specific experiment procedures, and this section mainly demonstrates 

our experiment results and analysis. We perform two experiments and the results show in the Table II.  

 

Table II: Experiment Results 

Malware Families Names ALLAPLE BANCOS LDPINCH PODNUHA ROTATOR  Accuracy 

Accuracy rate1(%) 92.95 56.67 82.4 97.44 63.83 86 

Accuracy rate2(%) 88.57 # 95.45 89.47 # 90.23 

 

In the first experiment, we perform the dataset training directly and the classification results of BANCOS 

and ROTATOR are not good. The reason of that will be thought of class imbalance from the amount of the 

data [18]. We get total accuracy of the first experiment according to the following formula: 

 

 

 

In this paper, we apply a supervised machine learning method to classify malware families, our method 

has two procedures: in the first process, we use bag of word model to transform XML form files obtained by 

CWSandbox into vector space, and we get whole numerical type malware data; in the second process, we 

employ SVM to train the optimal model and then test the testing samples, through experiment simulations, it 

demonstrates our classification precision is up to 90.23%. However, this work just is our preliminary attempt 

to malware analysis, and we hope that afterwards we can thoroughly connect malware features to actual and 

specific behaviors and furthermore, we can recognize attacks behaviors and objectives of malware. Those 

will be our subsequent work. 

5. Conclusion 
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                                                                  Accuracy = ∑
𝑁𝑃𝑖

𝑁
𝑛
𝑖=1

N represents the total of samples and 𝑁𝑃𝑖 is the ith accuracy in the ith class sample. It stands for the 

number of malware families. The total accuracy of the first experiment is 86%. In order to keep away from 

class imbalance, we choose the ALLAPLE, LDPINCH and PODNUHA as the dataset, and we can get the 

total precision up to 90.23%. It turns out our approach is effective and feasible.



In this paper, we apply a supervised machine learning method to classify malware families, our method 

has two procedures, in the first process, we use bag of word model to transform XML form files obtained by 

CWSandbox into vector space, and we get whole numerical type malware data; in the second process, we 

employ LibSVM to train the optimal model and then test the testing samples, through experiment 

simulations, it demonstrates our classification precision is up to 90.23%. We hope that afterwards we can 

thoroughly connect malware features to actual and specific behaviors and furthermore, we can recognize 

attacks behaviors and objectives of malware. Those will be our subsequent work. 
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