
Worst Case Execution Time Calculation of Parallel Embedded 

Real-Time Software 

Muhammad Waqar Aziz and Syed Abdul Baqi Shah

 

Science and Technology Unit, Umm Al-Qura University, Makkah, 21995, Saudi Arabia 

 

Abstract. Embedded Real-Time Software (ERTS) must be verified for their timing correctness where 

knowledge about the Worst-Case Execution Time (WCET) is the building block of such verification. 

Traditionally, research on the WCET analysis of ERTS assumes sequential code running on single-core 

platforms. However, as computation is steadily moving towards using a combination of parallel programming 

and hardware designs, new challenges in WCET analysis need to be addressed. This work derives safe WCET 

estimates of parallel ERTS using a hybrid approach that combines the flow and timing information of the 

parallel software. The timing information is obtained via measurement-based analysis by using time-stamped 

execution traces. The applicability of the proposed method is demonstrated by calculating the WCET estimates 

of parallel embedded programs in the ParMiBench benchmark suite. The results showed less pessimism in the 

computed WCET estimates compared to the measured WCET estimates.  

Keywords: embedded real-time software, worst-case execution-time analysis, parallel computing, software 

testing and analysis. 

1. Introduction 

A Real-Time System (RTS) is an embedded system, where the system tasks need to be completed within 

the specified time otherwise catastrophic results may occur. To ensure that the RTS would work correctly, a 

schedulability analysis is performed during the RTS development, which checks whether or not all tasks can 

meet their deadlines at runtime. This requires the knowledge about the Worst Case Execution Time (WCET) 

of individual tasks. In addition, the WCET analysis of RTS is needed in its design, for system understanding 

and more importantly to guarantee their behavior. WCET analysis can be performed either statically (without 

executing the program) or dynamically (by executing the program and measuring its execution time) [1]. 

Typically, measurement-based approaches are not considered to produce safe (i.e., not under approximated) 

estimates. Hence, reliable guarantees of observing the worst-case cannot be given.  

In contrast, static timing analysis always provides a safe upper bound of the WCET [2]. Moreover, it does 

not require measuring devices/controlled environment and takes shorter analysis times than 

measurement-based approaches. The static analysis of a program consists of the following three phases: (1) 

program-flow analysis [3]-[5] by which both necessary and useful execution flow information is derived, such 

as loop bounds and infeasible paths; (2) processor-behavior analysis by which execution times of the program 

segments are determined using either statically modeling the hardware [6] or making direct runtime 

measurements on it [7]; and (3) calculation [8], where the results of the previous steps are combined to 

calculate the WCET estimates of the program. The focus of this paper is on the calculation phase, assuming 

that the flow information is available.  

The growing performance requirements of RTSs need computation intensive software applications with 

high data throughput rates and low latency [9]. To cope with these requirements, multi-core architectures are 

                                                           
  Corresponding author. Tel.: +966-58-392-7245. 

   E-mail address: sashah@uqu.edu.sa. 

 

    

 

     

77

ISBN 978-981-11-0008-6

Proceedings of 2016 6th International Workshop on Computer Science and Engineering

(WCSE 2016)

   Tokyo, Japan, 17-19 June, 2016, pp. 7 -12

admin
打字机文本
doi: 10.18178/wcse.2016.06.002



now increasingly used in embedded real-time domain [10]. In addition, parallel computing can be applied to 

optimally use the available hardware [11]. Unfortunately, the above mentioned steps of WCET analysis work 

adequately for sequential programs running on single-core hardware, but are challenged in parallel computing. 

This demands the evaluation of the existing WCET analysis methods and techniques for parallel embedded 

programs, so that they can be modified or for proposing new ones. The objective of this work is to investigate 

a suitable calculation method to derive the WCET estimation of parallel embedded software.  

To make parallel software analyzable, the existing state of the art related work proposed the use of either 

specialized hardware [12] and programming language [2] or focuses on a particular aspect of parallel 

computing [11]. In contrast, the main contribution of this work is to derive the WCET estimates of parallel 

embedded software executing on arbitrary multi-core hardware. The WCET estimate of a task is calculated by 

utilizing its execution flow information at the source code level and the timing information (obtained by 

measuring the execution times of the program segments). This information is combined into an 

optimization-based problem, such as Integer-Linear Programming (ILP) [13].   

2. Task Model and Scope  

This work focuses on the timing analysis of individual tasks, which are composed of parallel executing 

threads. The main task creates (and later joins) child threads one or more times. This means that the task under 

analysis consists of both sequential (without threads) and parallel (threaded) portions. The threads could wait 

at the barriers (for synchronization) during their execution or for a lock acquisition operation before accessing 

a shared program segment (critical section). However, this work considers the case, where all the threads 

execute the same code. Due to this consideration, the synchronization related stall can be ignored [11], as the 

synchronization time is negligible. As the work is focused on data parallelism, where the input data is equally 

divided among the threads, there is no code segment to protect from simultaneous access of threads.  

Since measurement is used instead of static modeling of the hardware, the proposed method can be 

classified as hybrid measurement-based analysis. A hybrid approach combines the elements of static and 

dynamic analyses [14], i.e., it has the same steps as static analysis, except that the processor-behavior analysis 

is replaced by direct run-time measurements on the hardware. This makes the micro-architecture analyses (e.g., 

cache analysis) and other contention effects caused by parallel hardware out of the scope of this work. It is 

worth mentioning here that this work is contrary to the system-level analysis, where multiple tasks are 

executed in parallel. Thus, the issues related to massive parallelism, such as communication costs due to 

networking of different nodes, are not considered.  

3. The Worst-Case Execution Time Calculation  

This work derives the WCET estimate of a program, using the traditional ILP-based formulation [13] that 

combines the flow and executing time information of the program. However, it follows a measurement-based 

analysis approach to determine the execution times of program segments, instead of performing 

processor-behavior analysis statically. To derive the WCET estimate (Z) of a program, the ILP problem is 

formulated as the following objective function that seeks to maximize:  

 
                                                                                         (1) 

 

where ci is the cost a basic block of a program in terms of execution time and xi is its count, i.e., the number of 

times this basic block is executed. In simple words, the program execution time is calculated as the sum of the 

products of the execution counts and times (1) of its constituent basic blocks. The method of calculating the 

WCET estimates is depicted with the help of Fig. 1. The execution time of the basic blocks was calculated 

using the time-stamped execution traces of the task. To this end, two identified instrumentation point (ipoint) 
instructions were inserted at the start and end of each basic block. There were no restrictions placed on 

deploying instrumentation and hence probe-free tracing was supported. While delimiting a basic block, these 

ipoint instructions cause the target to produce a timestamp (called a timing trace) upon execution. The 

execution times of the basic blocks were computed by identifying the start and end of a basic block. This was 

88



achieved by parsing the required traces from the bulk of information logged in the trace file. An algorithm was 

developed to automatically compute the execution time of the basic block from the parsed traces. Instead of 

executing the program with random input data several times and then selecting the worst execution time, the 

worst-case input data was generated using evolutionary testing [6]. 

 

 
Fig. 1: Method for calculating the WCET estimates of parallel embedded real-time software. 

 

The other key flow information, used in (1) to compute the WCET estimate, is the execution counts. The 

execution counts represent the number of times each basic block of the task is executed. The execution counts 

were acquired by instrumenting the basic block with counters, during the program-flow-analysis phase. 

Generally, there are a few portions of a program which execute more than once, e.g., functions and loops. Most 

of the other program segments execute once and thus have no major impact (as their execution count is one). In 

addition, the function passed to threads in a parallel program usually executes many times (i.e., each thread 

executes the same function in parallel). This is equal to the number of threads created, which can be 

determined by inspecting the program code. It is, however, important to stress that this work does not attempt 

to perform the program-flow analysis. It is rather assumed that the program flow-analysis has been performed 

already and its information, such as the identification of the number of threads, basic blocks and their 

execution counts were already available. 

4. Experiment, Results and Discussion 

In this work, the Gem5 architecture simulator [15] was used to execute the parallel program and measure 

its execution times. Gem5 was selected as it is open-source, cycle-accurate architecture simulator that 

provides a tracing mechanism to extract timestamp execution information from an instrumented parallel 

program. To derive the WCET estimates, ParMiBench benchmark suite [16] is used as example parallel 

embedded software. It is a parallel version of a subset of MiBench benchmark suite [20]. ParMiBench is open 

source and it offers a collection of parallel embedded benchmarks that are representative of diverse domains of 

the embedded applications, such as control and automation, networks, offices, and security. This suite is 

designed to evaluate the performance of embedded multicore systems where many of these benchmarks are the 

suitable candidates for WCET analysis [21]. The details of these benchmarks are provided in Table 1. 

First, the WCET estimates of a task were calculated (the calculated WCET). Then, dynamic analysis was 

performed, to evaluate the tightness of the calculated estimates, by executing the same task and measuring its 

execution time. To this end, the longest end-to-end execution time of the task were measured (hence termed as 

the measured WCET). The tightness of the analysis was computed in percentage of pessimism in the 

calculated WCET with respect to the measured WCET. The results are shown in Table 2, where the unit of 

time is the number of processor clock cycles. From Table 2, it can be observed that the calculated estimates 

bound the measured estimates. Moreover, the derived WCET estimates are safer than the conventional 

end-to-end measurement approaches, due to the use of hybrid measurement-based analysis. The use of the 

worst-case input data further ensures that the program executed for its worst-case time or close to it. This thus 

eliminates the need of partitioning the input data among threads and measuring the execution time of each 

thread. This fact was further confirmed when the calculated WCET estimates were compared with the 

estimates generated via the worst-case input data. In this case, the pessimism of only 0.6% was observed, 

which clearly emphasized the correctness of the calculated WCET estimates. This also showed that the 

99



method used to calculate the estimates was least pessimistic.  

 

Table 1. Details of the benchmarks in the ParMiBench suite 

Benchmark Descriptioin Parameters 

Susan 
Image processing: Performs smoothing, edge detection and finds 

corners 

Input image and operation type 

flag (e.g. -s, -e and -c) 

BasicMath 

Math operations: Solves Cubic Equations,  finds Integer Square 

Roots, finds Square Roots of Long type numbers, Performs Degree 

To Radian Conversion, Perform Radian To Degree Conversion. 

Math operation type, input 

dataset and number of workers. 

StringSearch 

Performs String Search Operations using: 

1. Pratt-Boyer-Moore String Search. 

2. Case-sensitive Boyer-Moore-Horspool String Search. 

3. Case-Insensitive Boyer-Moore-Horspool String Search. 

4. Boyer-Moore-Horspool (Case-insensitive with accented 

character translation) String Search. 

Input text file, input strings file, 

Algorithm type and workers. 

Dijkstra 

Gets the shortest paths from node 0 to node N, with two CPU 

options: 

Each CPU with its own queue 

All CPUs share a common queue 

Input file and number of nodes 

Sha 

The parallel 'sha' perform digest computation of file and place the 

digest in separate output file by employing input data partition 

strategy. 

 

Input file and number of workers 

 

It is claimed that calculating the WCET estimates using the ipoints, as mentioned in this paper, also 

incorporates the stall times related to synchronization and access of the critical sections. Therefore, there is no 

need to calculate them separately. The ipoints were inserted using m5ops utility provided by Gem5. The 

m5ops inserts timestamps without affecting the actual execution time; as a result, there is no instrumentation 

cost. One can argue that the calculated WCET estimates do not provide an absolute safe bound, due to the use 

of a hybrid approach involving measurement-based analysis. However, in contrast to conventional end-to-end 

testing, the hybrid measurement-based analysis uses static analysis information about the code and hardware: 

flow analysis results and minimal hardware information can be used in measurement-based analysis to guide 

the testing process for better WCET estimations. Moreover, finding an absolute safe bound on the execution 

time is not required for most embedded RTSs, which are soft in their majority. Calculating the WCET 

estimates using other IPET-based calculation technique, such as constraint-logic programming has the 

problem of NP-completeness. This requires the investigation of the use of suitable search heuristics to improve 

the scalability of the WCET calculation technique.  

 
Table 2. WCET Estimates of Some Benchmarks from ParMiBench Benchmark Suite 

Benchmarks Measured Calculated Pessimism 

Stringsearch (5 char long string input) 10702583000 11836753000 10.60 % 

Stringsearch (5 char long string input) 12886961500 14990755000 16.325 % 

Dijkstra 8847226500 1048455500 18.51 % 

5. Related Work 

In the literature, there have been few contributions towards analysis of parallel programs, as the existing 

WCET-analysis research mostly focuses on sequential programs running on single-core architectures. 

Rochange et al. [17] for the first time highlight the problem of analyzing the timing behavior of non-sequential 

software on a multi-core architecture. They report manual analysis of a parallel application, which determines 

the synchronization and communication between its executing threads. The experiences in evaluating the 

WCET of parallel application, in the MARASA project, are reported in [17]. This study recommends 

determining the parallelism and synchronization in parallel code for its WCET analysis. However, the 

described process is completely guided by the user and is specific to the estimation of WCET of one 

component of a parallel application. Although some work has applied IPET to estimate WCET of parallel 

programs [18], yet they have not considered the synchronization stalls. Oppositely, other researches [11] have 

1010



considered synchronization stalls, but do not apply IPET.  

An approach for automatic timing analysis of parallel applications [11] shows how to compute the 

synchronization-related stall of individual threads. The WCET of the parallel program is determined by 

computing the WCET of the main thread and adding to it the worst-case stall of child threads at 

synchronizations. However, the approach relies on user-provided annotations to identify the synchronization 

patterns. The worst-case response time of parallel applications running on multi-core platforms is computed in 

[18]. Instead of proposing a new technique, the approach extends only the control flow analysis phase of an 

existing WCET estimation method. Similarly, the traditional ILP based analysis of sequential program is 

extended to incorporate the overhead of monitoring [19]. The method calculates the maximum monitoring 

stall and adds it to the WCET calculated using popular methods.  

6. Conclusion 

In addition to the usual functional verification, embedded real-time software (ERTS) also requires 

temporal verification to ensure conformance with timing constraints. Such verification requires knowledge 

about the Worst Case Execution Time (WCET) of the running tasks in the RTES. Therefore, calculating the 

WCET of ERTS has a vital value in the design and verification of these systems. Previous work in this area, 

mostly deals with sequential code running on a single core processor. In this work, the WCET estimates of 

parallel programs running on multi-core embedded platforms are computed. A hybrid measurement-based 

analysis approach is used to determine the execution times of program segments, instead of statically 

modeling the micro-architecture. The IPET-based formulation used takes into account the execution and 

timing information to yield WCET estimates. In the future, it is planned to apply the proposed method in 

real-life industrial-scale applications and to determine the causes and localization of undesired timing delays.  

7. References 

[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, et al. “The worst-case execution-time problem – overview of 

methods and survey of tools,” ACM Transactions on Embedded Computing Systems (TECS), 7(3):36, 2008.  

[2] A. Gustavsson, “Static Timing Analysis of Parallel Software Using Abstract Execution,” Malardalen University, 

Licentiate Thesis, 2014.  

[3] I. Bate and D. Kazakov, “New directions in worst-case execution time analysis,” In IEEE Congress on Evolutionary 

Computation, (CEC 2008), pp. 3545–3552, 2008.  

[4] J. Gustafsson and A. Ermedahl, “Merging techniques for faster derivation of WCET flow information using abstract 

execution,” In Proceedings of the 8th International Workshop on Worst-Case Execution Time (WCET) Analysis, pp. 

79–89, July 2008. 

[5] D. Kebbal, “Automatic flow analysis using symbolic execution and path enumeration,” In International Conference on 

Parallel Processing Workshops. ICPP 2006, 8 pp. - 404, 2006.  

[6] M. W. Aziz, S. A. B. Shah, “Test-Data Generation for Testing Parallel Real-Time Systems,” Testing Software and 

Systems, Volume 9447 of the series Lecture Notes in Computer Science, pp. 211-223. 2015. 

[7] A. Marref and A. Betts, “Accurate measurement-based WCET analysis in the absence of source and binary code,” In 

14th IEEE International Symposium on Object/Component/Service- Oriented Real-Time Distributed Computing 

(ISORC), 2011, pages 127–135, 2011. 

[8] A. Marref, and G. Bernat, “Predicated worst-case execution-time analysis,” Springer Berlin Heidelberg, 2009.  

[9] T. Ungerer, et. al. “Experiences and Results of Parallelisation of Industrial Hard Real-time Applications for the 

parMERASA Multi-core,” In 3rd Workshop on High-performance and Real-time Embedded Systems (HiRES 2015), 

Amsterdam, the Netherlands, January 2015. 

[10] A. Pyka, et. al., “WCET analysis of parallel benchmarks using on-demand coherent cache,” In 3rd Workshop on 

High-performance and Real-time Embedded Systems (HiRES 2015), Amsterdam, the Netherlands, 2015. 

[11] H. Ozaktas , C. Rochange, and P. Sainrat, “Automatic WCET Analysis of Real-Time Parallel Applications,” in 13th 

International Workshop on Worst-Case Execution Time Analysis (WCET 2013), pp. 11-20, 2013. 

1111



[12] T. Ungerer, et. al., “Merasa: Multicore execution of hard real-time applications supporting analyzability,” IEEE 

Micro (5) (2010) 66–75. 

[13] Y-T. S. Li, and S. Malik, “Performance analysis of embedded software using implicit path enumeration,” In ACM 

SIGPLAN Notices, 30(11):88-98, 1995. 

[14] B. Lisper, A. Ermedahl, D. Schreiner, J. Knoop, P. Gliwa, “Practical experiences of applying source-level WCET 

flow analysis on industrial code,” Leveraging Applications of Formal Methods, Verification, and Validation, 449–463, 

2010. 

[15] A. Basu, J. Hestness, D. Hower, et al. “The gem5 simulator”. ACM SIGARCH Computer Architecture News, 

39(2):1–7, 2011 

[16] S. M. Z. Iqbal, Y. Liang, and H. Grahn, “ParMiBench – An Open-Source Benchmark for Embedded Multiprocessor 

Systems,” IEEE computer achitecture letters, 9(2) July-December 2010. 

[17] C. Rochange, A. Bonenfant, S. Pascal Sainrat, et. al. “WCET Analysis of a Parallel 3D Multigrid Solver Executed on 

the MERASA Multi-Core.” In 10th International Workshop on Worst-Case Execution Time Analysis (WCET 2010), 

pp. 90-100. 2010. 

[18] D. Potop-Butucaru, and I. Puaut, “Integrated Worst-Case Response Time Evaluation of Multicore Non-Preemptive 

Applications,” 2013. 

[19] D. Lo, and G. E. Suh, “Worst-case execution time analysis for parallel run-time monitoring, ” In 49th 

ACM/EDAC/IEEE Design Automation Conference (DAC 2012), pp. 421-429, 2012.  

[20] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, R. B. Brown, Mibench: A free, commercially 

representative embedded benchmark suite, in: IEEE International Workshop on Workload Characterization, IEEE, 

2001, pp. 3–14. 

[21] J. Gustafsson, A. Betts, A. Ermedahl, B. Lisper, The mälardalen wcet benchmarks: Past, present and future, in: 

International Workshop on Worst-Case Execution Time (WCET) Analysis, Vol. 15, Schloss 

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010. 

1212




