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Abstract. With the prevalence of big data and cloud computing, both the network architecture and 

traffic pattern of the datacenter network changed. This brings challenge to the development of 

congestion control protocol for the datacenter network, as the traditional tools created for the wide 

area network and enterprise network don't meet the requirements of datacenter network well. In this 

paper, we will present our design and implementation of a flexible in-lab testbed for the 

development of datacenter network congestion control protocol. By using it to evaluate 

Transmission Control Protocol (TCP) and Data Center TCP (DCTCP), we demonstrate its 

flexibility and capability. 

Introduction 

During the first fifteen years of this century, we see the prevalence of web-based applications like 

Social Network Society (SNS) such as Facebook and Twitter, e-Bussiness such as Amazon and 

Taobao, and Cloud Computing such Amazon Web Service (AWS) and Aliyun. All these kind of 

services need powerful computing infrastructure to serve information to clients, needless to mention 

the traditional search service such as Google and Baidu. To lower cost and improve efficiency, 

companies tend to build their infrastructure based on server farm consisted of low-end commodity 

servers instead of supercomputers and one single datacenter of huge size instead of many ones of 

medium size. Today, the scale is so large that one single datacenter can accommodate about 10k or 

even 100k servers [1]. This brings new challenge to the state-of-art congestion control protocol TCP, 

which proved itself in Wide Area Network and Enterprise Network. 

The challenge is twofold. On the one hand, the building block of datacenter network is different. 

10Gbps and 40Gbps Ethernets are making their way into datacenter and replacing the 1Gbps 

Ethernet which TCP is tuned for. On the other hand, the traffic pattern of datacenter network is 

different. To meet the tight Service Level Agreement to satisfy user and ensure profit, compute 

paradigms like MapReduce [2] and Hadoop [3] are applied extensively. These cause the incast 

problem that TCP fails to maintain high utilization of bandwidth during this scenario. 

There have already been several protocols proposed to address this challenge, like DCTCP [4], 

D3 [5], D2TCP [6], MPTCP [7], pFabric [8], and PDQ [9]. And we are sure to see more in the near 

future.  

But the current tools for network protocol development fail to meet the requirements of 

congestion control protocol for datacenter network. The tools to evaluate network protocols fall into 

two categories: simulation and experiment. Simulation tools like NS2 [10], NS3 [11], OPNET [12], 

and NetSim [13] employ techniques to save memory and time consumed in the simulation. Thus, 

they are not strictly the same thing of reality. Experiment tools, like testbed PlanetLab [14] or 

Emulab [15], are not targeted at datacenter network. It could be time-consuming to build one such 

test case for datacenter network manually yet don’t fit the needs well. 
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In this paper, we design and implement a flexible in-lab testbed for the development of 

datacenter network congestion control protocol. Our contribution is threefold: 

1. We describe and analyze the design principles of a flexible testbed for datacenter network 

congestion control protocol.  

2. We compare the in-lab testbed design with other kinds of design like simulator-based and 

VPC-based (Virtual Private Cloud) and describe their pros and cons respectively. 

3. We present the design and implementation of our testbed and present its capabilities by 

reproducing similar results of some published datacenter network congestion control protocols. 

In the rest of this paper, we will proceed as following: first, in section 2, we will describe some 

design principles of such testbed that provides flexibility to the development of datacenter network 

congestion control protocol. Next in section 3, we will compare different ways to implement such 

kind of testbed according to these principles and analyze their pros and cons. Then we will 

introduce our implementation in section 4. And in section 5, we will present its capability by 

evaluating TCP and DCTCP. At last, we conclude this paper and discuss some future works in 

section 6. 

Design principles 

In this section, we will describe and analyze some design principles of a flexible testbed for 

datacenter network congestion control protocol. 

We argue that a flexible testbed designed to assist the development of datacenter network 

congestion control protocol must provide flexibilities in following aspects. 

Traffic: Different than wide area network and enterprise network, there are mice flows and 

elephant flow in the datacenter network. Mice flow indicates the flow generated from applications 

that employ a MapReduce compute paradigm, such as rendering the search results of search product 

or the news feeds of SNS products, which has a typical size about several KB. Elephant flow 

indicates the flow generated by applications to synchronize storage, update system states, migrate 

virtual machine images, and conduct backups, which has a typical size over 1MB [4]. A flexible 

testbed for datacenter network congestion control protocol should be able to produce both kinds of 

traffic. 

Topology: There are many different topologies in the datacenter network. There are 

conventional topologies like mesh when synchronizing storage, dumbbell when conduct virtual 

machine migration, and star when mapping and reducing computation. There are also novel 

topologies like BCube [16], DCell [17], Fat-Tree [18], and Jellyfish [19]. A flexible testbed should 

be able to support as many as possible different kinds of topologies, at least enough to conduct the 

development for datacenter network congestion control protocol. 

Control: Datacenter network is a single management domain charged by a single management 

entity. Network-agnostic is not a necessary requirement. Active Queue Management (AQM) 

techniques are employed extensively in the design of datacenter network congestion control 

protocol, like DCTCP [4] and D2TCP [6]. Some protocols go one step further to use customized 

switch, for example D3 [5], pFabric [8], PDQ [9] and so on. A flexible testbed shouldn’t restrict the 

datacenter network congestion control protocol to be host-centric or switch-centric. 

Tracing: Due to the existence of different kinds of traffic, there are different performance 

metrics employed to measure their performance. Mice flows are mainly measured by flow 

completion time because search or other kind of interactive services always have a tight SLA less 

than 200ms [20]. Longer flow completion time will cause profit loss or service quality degradation. 

But elephant flows are measured by throughput because it typically occurs in the storage 

742



synchronization which has looser completion time requirement. Moreover, many datacenter 

network congestion control protocols also have the need to tracking the queue length of switch to 

monitor the microscopic behavior. A flexible testbed should be able to trace all these kinds of data. 

Scalability: In the MapReduce compute paradigm, master node sends query to its worker nodes. 

Each worker node prepares the response independently and then sends it back to the master node. 

The master will wait a short period of time to collect as many as possible responses to produce the 

final result. The number of worker nodes could ranges from dozens to hundreds. A flexible testbed 

should offer an efficient and cost effective way to provide enough parallel senders to fulfill this kind 

requirement of scalability. 

Comparison of different ways of implementation 

In this section, we will compare different ways of implementing flexible testbed for datacenter 

network congestion control protocol. We will describe and discuss their pros and cons. We argue 

that the in-lab way to implement a testbed provides more flexibility to the development of 

datacenter network congestion control protocol.  

To implement testbed for network protocol, there are already successful projects like PlanetLab 

or Emulab. They employ a VPC-based (Virtual Private Cloud) method and deploy many nodes 

around the world. As the prevalence of cloud computing, Amazon and Alibaba also provide similar 

VPC services that can be used to build testbed for network protocol. This way helps to develop 

wide area network protocol but not datacenter network congestion control protocol. Comparing 

with the in-lab way, they provide different level of support of flexibility. We summarize them up in 

the Table 1. For clarity, we also include the simulator-based way to implement testbed, represented 

by NS3, OPNET, and NetSim. The aspects of comparing is based on the design principles we 

discussed in section 2, including authenticity which describe how close the result will be compared 

with the production environment. 

 

Table 1: Different Ways Provide Different Extent of Flexibility 

Flexibility  Simulator VPC In-lab 

Traffic high high high 

Topology high medium high 

Control high medium high 

Tracing high medium high 

Scalability high high high 

Authenticity low medium high 

 

Simulator-based testbed provides low level authenticity because it often uses techniques to save 

time and memory consumed by the simulation. For example, NS3 uses virtual application payload, 

which cause the packet contains no payload just a number to indicate its size. The packet isn’t 

actually transmitted through the wire. The simulator calculates the time needed to complete the 

transmission and then put the event that packet is received into the schedule queue of the simulator. 

VPC-based testbed provides medium level of flexibility in aspects of control, topology, and 

tracing because it is difficult to have full control of its network devices. Therefore, it is difficult to 

trace the switch queue and even impossible to deploy some switch-centric datacenter network 

congestion control protocols. The switch features that a deployed protocol can take use of are 
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restricted to the features the cloud service provider can provide. This will greatly limit the 

development of datacenter network congestion control protocol.  

VPC also uses overly network to provide the topology flexibility. Different nodes in the same 

topology may be placed on the same physical server, or across rack or pod. This may contradict the 

semantics of the topology and thus lower the level of authenticity to medium. 

Implementation 

In this section, we will describe the implementation of our in-lab flexible testbed for development 

of datacenter network congestion control protocol. 

In our testbed, a test case is conducted following the workflow showed in the Figure 1. The 

architecture of our testbed is showed in Figure 1, where a star topology is used to mimic a single 

rack in the datacenter. 
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Fig 1: The Workflow of a Test Case 

 

There are two kind of nodes in our testbed, the controller and worker. We use controller to 

manage the entire process of evaluation. For example, generate and distribute traffic t according to 

the specification of the test case. The evaluation of the datacenter network congestion control 

protocol is conducted among workers. The traced throughput and flow completion time are saved 

on corresponding workers. The traced data of queue length is saved on the host where the NetFPGA 

[21] card is installed. When the test finished, the controller will collect these traced data and 

proceed to do analysis. If the results are not satisfactory, the test can be conducted again by 

modifying the topology, application type, or traffic pattern. 

We provide implementation of applications to mimic the MapReduce application which generates 

mice flow, and the storage application which generates elephant flow. The size and arrival interval 

of flow can be configured to be generated according to specific distribution, like uniform 

distribution, Poisson distribution, or lognormal distribution.  

To get full control, we utilize NetFPGA as the platform to implement switch. It offers great 

flexibility to implement novel switch-centric datacentre network congestion control protocol. The 

NetFPGA offers four ports with 1Gbps or 10Gbps bandwidth. We cascade them to make more ports 

available. Different Ethernet is used to connect the controller to the switch to keep full access to it 

during the conducting of the test case. Thus, it is possible to retrieve the queue length dynamically. 

In Figure 2, a single worker is used to mimic a single server in the datacentre. But to provide 

scalability, the worker can take use of a single process to mimic a single server. Thus, one worker is 
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capable of mimicking hundreds of servers. It sacrifices authenticity, but it provides a more cost 

effective way to scale. When there is limitation on hardware, this method can be employed. 
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Fig 2: Testbed Architecture.  

Controller node use different Ethernet network to control worker nodes and switch node. Thus, 

the control traffic don’t interfere the generated traffic during evaluation. 

Experiments 

In this section, we will conduct the TCP incast [1,22,23] and DCTCP benchmark [4] experiments to 

demonstrate the capability and flexibility of our testbed. 

The incast scenario compares performance of TCP Tahoe [24] and TCP NewReno [25]. One 

node requests a fixed block of data from multiple senders. As the number of senders increase, the 

throughput will drop. The result is showed in Figure 3. We set RTOmin as 200ms, use 1Gbps 

bandwidth, 1MB fixed block of data, and 64KB switch buffer. 

 

Fig 3: TCP Incast. RTOmin=200ms, Fixed Block=10MB, Bandwidth=1Gbps, Switch Buffer=64KB 

 

DCTCP benchmark evaluates the performance of DCTCP. We generated the query traffic and 

background traffic according to the distribution described in [4]. Query flow spawned at every node 

will be sent to every other node in the rack and has a fixed size of 2KB. And background flow 

spawned at every node will be sent to a random node in the same rack. Its size is generated 

according the flow size distribution in [4]. The mean flow completion time is showed in Figure 4. 

We set K = 20 and RTOmin = 10ms, and use 12 senders. 
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Fig 4: DCTCP Benchmark. 

The benchmark lasts 10 minutes under the mixture of background traffic and query traffic, 12 

senders involved. 

Conclusion 

In this paper, we design and implement a flexible in-lab testbed for the development of datacenter 

network congestion control protocol. We also describe and analyze the design principles of such 

kind of testbed. The datacenter network presents a different environment than wide area network 

and enterprise network, which cause the conventional tools inappropriate. By evaluating TCP and 

DCTCP, we demonstrate the flexibility and capability of our in-lab testbed. 
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