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Abstract. The ability to fast failover from failures has always been a crucial goal of network 

reliability in OpenFlow architecture. In this paper, we proposed a Local Reverse Back algorithm 

and a NCFF fast failover scheme to ensure fast failover from network link failures. Local Reverse 

Back algorithm selectively reverse traffic back to upstream node to make a comprehensive failover 

decision and it implements efficient link failure notification without extra detection mechanism. 

Based on categorizing switches of data plane into a set of types, NCFF establishes an efficient 

autonomic coordination mechanism between restoration and protection, which achieve a maximal 

utilization of pre-planned protection paths. To demonstrate the practical performance of the 

proposed scheme, we have implemented NCFF in our OpenFlow testbed. The numerical results 

verify that the NCFF enables faster reaction time and high survivability in various topologies. 

Introduction 

Software-defined networking has been proposed as an innovative split architecture that 

decouples control plane from the forwarding data plane. By exploiting applications appropriately, 

the centralized controller promises better connectivity, resource utilization, optimization 

opportunities and flexibility network management from a global perspective. The OpenFlow[1] is a 

predominant deployed protocol for SDN. 

Network reliability always the fundamental issue to ensure quality of service. Therefore, many 

solutions to mitigate the impact of failures have been imposed in the literatures[2,3,4,5,6].When a 

link failure occurs, communication data plane must direct affected traffic efficiently to alternative 

path or identify the physical connectivity disruptions quickly. The main challenges on designing a 

failover mechanism base on OpenFlow networks are: 

(1) The lack of efficient link-level failure location and connectivity monitoring scheme is a quite 

challenging task for notifying source end of switch and controller to perform failover action 

immediately. The Link Layer Discovery Protocol originated from OpenFlow identify failures in the 

range of sub-seconds[7].In the scheme such as OAM functions[8]and Bidirectional Forwarding 

Detection (BFD)[9,10] that the full-state controller is in danger of being overloaded with generating 

high -frequency probe packets. 

(2) Each OpenFlow switch delivers packets to a specific output port according to specific flow 

entry composed of complicated match fields. Therefore, interaction of the switch with remote 

controller for re-computing enormous new paths will lead to unacceptable higher latencies. 

In this paper, we proposed Local Reverse Back algorithm and a node classification fast failover 

scheme (NCFF) for OpenFlow networks to deal with random single link or interface failures. The 

NCFF relies on categorizing switches of data plane into a set of types and a novel reverse back 

mechanism based on group table feature. Upon failure occurrence, recovery can combine 
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restoration and protection scheme[11,12] effectively. Meanwhile, our algorithms address the two 

design challenges mentioned above. In this work, we devise a way to fill the gap in coordinating 

two well-known strategies.   

The remainder of the paper is organized as follows. In Section 2, we present a novel fall back 

algorithm as foundation of NCFF. In Section 3, we define the node category, and elaborate the 

relation of failover schemes and three types of switch node. In Section 4, we evaluate the 

performance of our scheme and compare with other well-known solutions. Finally, conclusion are 

made in Section 5. 

Local Reverse Back algorithm 

Typical resilience mechanisms for the OpenFlow network element and link failures are proactive 

protection and reactive restoration. Compared with restoration solution that the alternative paths are 

not established until a failure occurs, the protection scheme configure pre-planned backup 

flow-entries with working flow-entries before the failure occurs. In particular, the numerous number 

of preconfigured backup entries propose great challenges to storage capacity of flow tables in 

protection. 

Considering the implementation of OpenFlow, we come up with a Local Reverse Back algorithm 

that would direct affected traffic back to upstream nodes for seeking better recovery approach in the 

presence of failure. In design, our primary focus is on how to increase utilization of the backup 

flow-entries in different failure scenarios so as to eliminate unnecessary recalculation of alternative 

paths. 

Overview. Local Reverse back Algorithm selectively transfer flows back to upstream node 

which to make a decision of failover as depicted in Figure 1(a) and Figure 1(b). 

The advantage of Local Reverse Back algorithm reflects in two aspects: (1) the upstream 

switches can be timely notified of downstream link failure through reversed packets without 

involving controller. (2)With a broader perspective, the upstream nodes can adopt the more 

appropriate methods to recover, for example, converting to backup flow entry. 
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 Fig.1 (a): Normal Forwarding 
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Fig.1 (b): Local Reverse Back When Failure Happens 

In addition, the implementation of our proposal is supported by group Table and tagging 

technique. Beginning with version 1.1, OpenFlow protocol introduced the concept of “group table”. 

Each group entry contains a set of action buckets and the group will select one bucket for each 

packet. Furthermore, local fast failover mechanism has been supported by fast failover type of 
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group entry. Upon the port/link failure is identified, the alternative path as next active bucket are 

performed immediately, since the fast failover type tables have been monitoring the status of the 

output ports. Tagging technique is used to set up a flag in packet header that will be sent back from 

the interface which they were received. 

Algorithmic Approach. In the case of link failures, part of affected flow convert into alternative 

paths if the action field of matched flow entry is directed to a fast failover type group entry. But for 

most of affected flows, packets will be forwarded in the opposite direction and a flag will be set in 

packet header. Once the marked packet received, the upstream switch promptly delete or inactivated 

the relevant entry that forward flow along the direction of fault, and the following packets will not 

be delivered along the original direction. Note that the packets reversed back without being marked 

should not be forwarded. The Local Reverse Back algorithm is summarized in Algorithm 1. 

The used notations in the algorithm are shown as follows, 

Given input constant values: 
n

k : k th   interface of switch n  occurs interruption 
n

F : set of all flow entries in switch n , 
n n

k
f F  

n
T : flow table of switch n  

G :  the action of flow directs to failover type group table 

Decision variables: 
n

k
P : set of paths affected by local failure n

k , 
n n

k k
f P  

( )
in n

p f : the in_port field of flow f  in switch  n  

( )
out n

p f : the original out_port field of flow f  in switch  n  in normal state 

( )
n

a f : the action of flow f  in switch  n  

( )
n

pkt f : the packets of flow f  in switch  n  

( )
n

k
g f : the failover out_port in the instructions of group entry for flow 

n

k
f  

( ( )
n

flag pkt f : = 1, if the packet of flow 
n

f  is set to reverse back; = 0 normal forwarding. 

( ( ))
in n

r pkt f : the actual in_port of flow f in switch  n  


( )

out n

k
p f : the failover out_port after the  

n
k occurrence, = 0 indicate the packet need to be 

dropped 

 

Algorithm : Local Reverse Back 

1  input: ( )
n

pkt F
, 

n
k  

2  Output: out n

k
p P  

3  set :
n

k
P   

4  for n n
f F  

5    if  ( )
out n n

k
p f k , then 

6          :n n n

k kP P f   

7  for ( ) ( )n n

k kpkt f pkt P                //for received packets 

8    if ( ( )) ( )
in n out n

k
r pkt f p f  && ( ( )) 1

n
flag pkt f    

9       if ( )
n

a f G  

10          


( ) : ( )
out n n

k k
p f g f  

11      else 
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12          


:( ) ( )
out inn n

k k
p pf f  

13            delete n
f  

14   else if ( ( )) ( )
in n out n

k
r pkt f p f  // ( ( )) 0

n
flag pkt f   

15      drop ( )
n

pkt f  

16   else      // ( ( )) ( )
in n out n

k
r pkt f p f  

17      if 
( )

n

k
a f G

 

18          


( ) : ( )
out n n

k k
p f g f  

19     else 

20         


( ) : ( )
out n in n

k k
p f p f  

21         ( ( )) : 1
n

flag pkt f   

Processing with Local Reverse back algorithm, each influenced flow can be forwarded according 

the output 


( )
out n

k
p f

, and we present in detail the recovery scheme in Section III 

Node Classification Recovery  

We creatively defined 3 types of switch nodes through which the local switch can unilaterally 

decide to adopt a reactive restoration strategy, a proactive protect strategy or abandon recalculation 

under random link failures. We will assume that for each flow a reasonable number of pre-compute 

backup path entries (usually only one) have been configured in advance. Indeed, transit switch 

nodes of an OpenFlow networks could be classified as follows: 

 Relay Node (RN, type 1):Relay Node serves a one-to-one flow transfer pattern which only 

have one original incoming port and one outgoing port for a flow considering a working path and 

all backup paths (e.g., switch D in Fig 1). For this flow, the node can‟t forward packets through 

other prepared outgoing port. 

 Switchover Node (SN, type 2): Switchover Node serves a one-to-N (N>1) flow transfer pattern 

which have one original incoming port but more than one potential outgoing port considering a 

working path and all backup paths (e.g., switch node C in Fig 1).This kind of node is configured 

with one of more backup entries, and can enable the transmission of packets from other 

non-primary outgoing port, which indicates that it‟s a switchover node. With one exception, the 

N-to-N (N >1) nodes can also be classified in this category. 

 Aggregation Node (AN, type 3): Aggregation Node serves a N-to-one (N>1) flow transfer 

pattern which have multiple potential incoming port but only one outgoing port considering a 

working path and all backup paths (e.g., switch node E in Fig 1). The implication of the node is that 

at least two of working path and pre-compute backup path converge on a node. 

In NCFF, for each admitted flow, the controller configures working entries at relevant switches 

and one backup path, if it exist, is configured for the case of link failure simultaneously. But as we 

know, one pre-planned backup path can‟t cover all failure situations, so different failure scenarios 

need different failover mechanism in OpenFlow networks. 

In situations where arbitrary single failures occur in an OpenFlow networks, the NCFF scheme 

first analyses the local transit switch type to decide on an appropriate action for the failure. 

Moreover, there are four potential scenarios that have been considered carefully by NCFF. 

(1) If the switch attached to the failed link is a relay node (type 1), the corresponding flows 

should be reversed according to Local Reverse Back algorithm. Transit switch SW D in figure 2(a) 

is a RN node for the flow 1, which forwards packets through next-hop SW E. Once the outgoing 
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link (D, E) fails, SW D reverses the packets back to the sending neighbour (SW C) and transmits 

along upstream in sequence until the switch type is no longer a RN type. 

(2) If the recursive returning of flow meet a SN (type 2) node or the switch adjacent to failure 

link is the SN node, proactive protection recovery using fast failover group table is performed by 

the SN switch immediately in NCFF. The SN type of switch imply that pre-planned backup up 

paths have been installed. In figure 2(a), when the adjacent link(D,E) is unavailable, packets are 

delivered from SW D back to SW C. SW C is a SN node, which have installed backup path to 

handle failure locally without remote controller. At SW C, the flow is forwarded through backup 

outgoing link (SW C, SW B) decisively. 

 

Proactive Protection

Controller

SWE SW FSW A

SW B

SW C

SW D

OF1.3  Switch

SN

Flow 1 working path

Flow 1 backup path

RN

Src

DstSW G

  

Fig.2(a): Reverse Back and Proactive Protection 

 

(3) If the recursive returning of flow meet an AN (type 3) node or the switch adjacent to failure 

link is the AN node. The AN type of switch illustrates there are more than one feasible incoming 

port and only one outgoing port for the flow, but the previous backup paths become invalid for 

current switch. Requesting alternative path to controller is only possible approach to use in this 

scenario. Referring to figure 2(b), when SW E, which is an AN node, loses link (E, F) connectivity, 

predefine failover path (A-C-B-E-F) becomes unavailable, then SW E will inform the controller 

topological state changes to recalculate an new path rapidly. 

Controller

SWE
SW F

SW A

SW B

SW C

SW D

OF1.3  Switch
AN

Flow 1 working path

Flow 1 backup path

Reactive Restoration

Src

Dst

SW G

 

Fig.2(b): Reactive Restoration 

 

(4) If the recursive returning of flow meet an ingress switch src or the switch adjacent to failure 

link is the ingress switch, whether there is a pre-computed backup entry is the critical factor in 

determining the approach adoption. (a) If there is an existing backup entries installed on related 

switch, path re-computation will be requested by src switch (RN type). (b)If not, since there is no 

backup path in the first place, the date traffic should be dropped immediately.As shown in Figure 
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2(c), SW A is an RN and ingress switch for flow 1. The working entry is configured with no backup 

entry as no alternative path is available. The packets are dropped directly upon failure of link (A, B) 

occurs. 

Controller

SWE SW FSW A

SW B

SW C

SW D

OF1.3  Switch

Flow 1 working path

Drop

abandon recalculation

RN

Src

Dst

SW G

  

Fig.2(c): Abandon Recalculation 

 

Initially, when each first packet of incoming flows consult the controller for forwarding 

behaviors, the controller compute a robust failover path, if it exist, as well as primary working 

flow-entries in NCFF. The computation process provide ability to equip related switch‟s 

flow-entries with category detail information. In fact, it is exactly based on this tag information 

used to identify the switch type for each flow that NCFF scheme can be implemented. As shown in 

Figure 3, an OpenFlow 1.3 flow table entry contains: match fields, priority, counters, instructions, 

timeouts and cookie[13]. In instructions field, action header is common to all actions, and we use 

the unused pad field of action header to describe the switches‟ category for each flow. Category 

information is encoded in pad[0]-pad[1]. A value of „00‟ indicates that there is no available backup 

path for the flow. „01‟, ‟10‟ and „11‟ represent the switch is a RN, a SN and an AN node, 

respectively. Note that the tag information need to be configured along with flow-entries. 

 

Match Fields Prority Counters Instructions Timeouts Cookie

  struct ofp_action_header 

{

         uint16_t   type;

         uint16_t   len;

         uint8_t    pad[4]

  }

Bit 1 NULLBit 2 NULL

Pad 0 Pad 1 Pad 2 Pad 3

  0 0      no backup path

  0 1      RN switch  (type 1)

  1 0      SN switch  (type 2)

  1 1      AN switch  (type 3) 
 

Fig.3: Fields Used for Category Information 

Experimental Evaluation 

We have evaluated the performance of the proposed NCFF scheme through emulation. Three sets of 

experiments have been conducted using our physical testbed, which consisted of a remote controller, 

seven software OpenFlow switches, a Spirent TestCenter and several hosts. 

Test Environment. As shown in Figure 2(a), the topology is the most common in OpenFlow 

Networks, and it can easily simulate four different failure scenarios mentioned above in section 3 to 

validate the efficiency of our proposed method. Each switch is implemented on a PC (i.e., Intel 

Core 2 CPU 2.33 GHz, 2GB RAM, Ubuntu 14.04) performing OpenVswitch 2.3.0 [14] supporting 

OpenFlow 1.3 Failover Group Table. The centralized controller capability is realized using the 

floodlight implementation[15], installed on a server running Ubuntu 12.04 with an Intel Xeon quad 
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core 3.00GHz CPU and 16GB RAM. We implemented our NCFF scheme on our testbed to handle 

failures in OpenFlow Networks. 

In our emulation environment, two test end-hosts have been deployed the iperf which can 

generate packets with a fixed rate at unit time and measure packet loss. Upon a link failure occurs, a 

break in data transmission and packet loss are detected and recorded by iperf server at Dst host. 

Therefore, based on packet loss ratio during the outage, the failover time 
f

T can be computed. In 

addition, for the purpose of generating a high number of concurrent requests, we use the Spirent 

TestCenter to generate massive packets with different source and destination IP address, which will 

cause heavy computing load to controller. 

Emulation Scenarios. We have validate the performance of the NCFF under different single 

link failure situations. 

Scenarios 1:With reference to Figure 2(a), before injecting the link failure, the traffic flow from 

Src host connected with SW A to Dst host connected to SW F has been transmitted along the 

working path(A-C-D-E-F). Meanwhile, the backup path (A-C-B-E-F) has been computed and 

installed, and category information defined by our proposal has been set in flow-entries or group 

entries on related switches. When we deliberately break link (D,E),as shown in Figure 2(a), the data 

traffic is reversed back at SW D, and transmission path convert to path (A-C-D-B-E-F) since SW D 

is a RN node and SW C is an SN node. We have repeated this failure on link (D, E) 100 times and 

obtained c displayed in figure 4(a). Considering that time interval of user packet sent by iperf 

affects the precision of the measurements, we compared the packet loss under different sending rate 

in above failure scenario, and obtained Figure 4(b). 

Scenarios 2: As shown in Figure 2(b), if the link failure occurs between SW E and SW F, then 

the pre-planned backup path (A-C-D-E-F)is invalid. SW E will check the tag information in the 

flow entry to identify the type of itself. As an AN node, SW E immediately interacts with controller 

for new forwarding decision in updated topology and forwards the traffic along (A-C-D-E-G-F). In 

this scenario, the recovery time 
f

T  is relatively long, but which is inevitable to reactive restoration. 

In order to emulate the real production environments, we use the TestCenter to generate numerous 

different streams in our testbed. The result is displayed in Figure 4(c). 

 

Fig.4 (a): Recovery Times for Scenarios 1 
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Fig.4 (b): Packet Loss Ratio for Scenarios 1 

 

 

Fig.4(c): Recovery Times for Scenarios 2 

Analysis of Results. Figure 4(a) illustrates the recovery time 
f

T  of our scenarios 1 experiments. 

The rate of data traffic v has been set 10000 pps, in other words, the connectivity was confirmed at 

an interval of 0.1 ms. Additionally, we used if config command to bring up/down the interface, 

instead of interrupting physical connections. In this case, we measured the average recovery time 

f
T  of 3.4 ms and 

f
T was distributed in the range 2.0-4.7 ms. To eliminate the influence of packet 

exchange ratio, we generated packets at v=100, v=500, v=1000, v=5000, v=10000 and v=20000 pps, 

respectively. Figure 4(b) shows that packet loss can‟t be detected at v=100 pps (10ms time interval) 

and we obtained the packet loss rate of 2.0‰2.9‰,3.4‰,4.3‰,4.4‰ in 1 second of interruption 

occurred .The result show that packet loss rate generally remained at a level of 4.3‰, which means 

the alternative path switches fast and steadily under the NCFF protection mechanism. 

As shown in Figure 4(c), we measured recovery time 
f

T of scenarios 2 experiments against 

increasing number of requesting flow. In the case of requesting flows W=1, the recovery time was 

distributed in the 80ms-170ms and the average value is 145 ms within 100 trials. Due to interaction 
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with the controller, the failover time of restoration strategy is much longer than that of protection 

strategy. Therefore, when the requesting flows W=500 flows/s and W= 1000 flows/s, we obtained 

averages failover time of 251ms and 334ms, which shows that processing time increases with the 

number of concurrent requesting number. The large variation range of recovery time indicates the 

controller‟s real-time load has a profound effect on failover time under the NCFF reactive 

restoration mechanism. 

From the experiments we conducted above, it is clear that the single link failure should be 

recovered with protection as much as possible. Indeed, the NCFF make it easy to achieve this 

through transferring failover point to an upstream node by Local Reverse Back algorithm. 

Conclusions 

In this paper, we have proposed a node classification fast failover scheme for survivable OpenFlow 

networks. The NCFF scheme combine restoration and protection scheme effectively based on Local 

Reverse Back algorithm and analysis of relevant switch‟s type. In the presence of failure, local 

failover decision can avoid imposing additional communication overhead on controller. 

Moreover, flexible failover point is allowed so as to achieve the maximum utilization of 

pre-installed protection entries, which can reduce path re-computation requests by 50% with no 

extra backup paths. Our experimental results demonstrate that the NCFF scheme guarantee the 

seamless failover within 4ms and low packet loss ratioduring the period of recovery in protection 

condition. Moreover, compared with the existing methods, the NCFF has higher survivability than 

OSP[15] and the scheme based on BFD[16] for various topologies and more efficient 

decision-making process than CogMan[12]. 
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