

Technology for Integrating Idle Computing Cluster Resources into
Volunteer Computing Projects

A. P. Afanasiev2, I. V. Bychkov1, M. O. Manzyuk1, M. A. Posypkin2, A. A.
Semenov1, O. S. Zaikin1

1Institute for System Dynamics and Control Theory SB RAS, Irkutsk, Russia

2A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow, Russia

Keywords: volunteer computing, BOINC, computing cluster, job scheduler, MPI, SAT@home,
OPTIMA@home.

Abstract. In this paper we propose the technology for integrating idle computing cluster resources

into volunteer computing projects. The main principles of this technology are the following: only

standard cluster user rights and only idle computing cluster resources (i.e. the resources that are not

employed by other cluster users) are used. We describe the CluBORun tool implementing this

technology for BOINC-based volunteer computing projects. The CluBORun tool was successfully

applied to boost the performance of volunteer computing projects SAT@home and

OPTIMA@home.

Introduction

Nowadays there are many problems, for solving which it is necessary to involve large-scale

computational resources for months or even years. Such tasks arise for example during the

processing of astronomical data, solving problems from cryptography and cryptanalysis, modelling

the synthesis of new chemicals, etc. Unfortunately, the problems of such kind usually conflict with

standard administrative rules on the use of modern computing clusters: the chances of obtaining a

significant portion of computing cluster resources for solving one particular problem for a

prolonged time are very small (unless the computing cluster is designed specifically for solving

such problems). That is why in the recent years the concept of volunteer computing is becoming

more and more popular for solving the problems of the mentioned type [1]. According to this

concept, the private persons called volunteers provide the computational resources for solving

large-scale problems. Usually, volunteers offer the resources of their own PCs. A number of

important from the practical point of view or challenging problems are being solved today using

volunteer computing projects. The most popular projects are SETI@home, Einstein@home, GIMPS,

Folding@home, Rosetta@home.

Meanwhile, it is important to note such a significant issue as systematic underutilization of many

computing clusters. At some moments the computing cluster can be loaded up to 90%, at some –

half of its resources may be idle. This problem is important because even mostly idle computing

cluster consumes a lot of electricity. The monitoring of load performed for several clusters showed

that an average load per year usually varies between 50% and 70%.

Thus, on one hand we have the problems that can make use of any additional computational

resources, on the other hand – underutilization of computing clusters. As a result of the analysis of

these two problems we propose the technology that integrates idle computational resources of

computing clusters into volunteer computing projects.

Let us give a brief outline of the article. In the next section, we describe the basic ideas of

volunteer computing. Then we illustrate the work of such projects on the example of the

SAT@home project, developed and maintained by us. After this, we describe the CluBORun

system that utilizes the idle computational resources of computing clusters for the needs of

volunteer computing projects. Further, we display the results of computational experiments, in

which CluBORun was used to boost the performance of volunteer computing projects SAT@home

and OPTIMA@home.

2015 The 5
th

International Workshop on Computer Science and Engineering

109

admin
打字机文本
doi: 10.18178/wcse.2015.04.018

Basic elements of the concept of volunteer computing (on the example of the SAT@home

project)

As we noted above, in volunteer computing the computational resources are provided by volunteers.

Generally it is best to apply volunteer computing to solving problems that can be decomposed into

subproblems of lower dimension and processed independently (the so-called embarrassing

parallelism). We will refer to the subproblems obtained during the decomposition of the original

problem as elementary subproblems. The decomposition should be performed in such a way that

each elementary subproblem can be solved even by a weak computing node (in volunteer

computing it is usually called host) relatively fast – from several minutes to several hours.

There are special instruments that are used to establish the volunteer computing projects. The

most widely used tool for this purpose is the BOINC platform [2]. Below we outline the basic

principles of the BOINC computing.

1. The project is managed by the BOINC server that has to work 24/7. The server functionality

is the following: it provides client applications for different platforms, generates batches of

elementary subproblems and sends them to project participants (volunteers), collects and

processes the results obtained.

2. The resources of the project consist of volunteer’s hosts. Each volunteer’s host gets the

client application and batches of elementary subproblems from the server. The results

obtained are sent back to the project server. To solve each elementary subproblem only idle

computational resources of the host are utilized. The resources of the host are managed by a

special program called BOINC manager. Its settings are quite flexible since it should utilize

only idle host resources. One can set the BOINC manager in such a way that the solving of

corresponding problems is performed only in time intervals when the user does not use the

host for solving any other problems. If the user needs the resources, the BOINC manager

must interrupt all computations and later return to the point where the process was

interrupted. That is why it is important to be able to save intermediate results of the

computations.

3. On one host it is possible to work with several projects – the BOINC manager divides idle

host resources according to the chosen priorities.

Let us illustrate these principles on the example of the BOINC-based volunteer computing

project SAT@home [3], that was developed and is being maintained by us. The project was

launched on September 29, 2011. On February 7, 2012 SAT@home was added to the official list of

BOINC projects
1
 with alpha status. Recently its status was improved to beta. SAT@home is aimed

at solving hard combinatorial problems that can be effectively reduced to Boolean satisfiability

problem (SAT) [4]. Such problems can be found in many areas, for example, verification,

cryptography, combinatorics and bioinformatics. SAT is usually considered as the problem of

search for solution of a Boolean equation in the form of CNF=1, where CNF is a conjunctive

normal form. If the solution exists, then it is called the satisfying assignment. Otherwise the CNF is

called unsatisfiable. All known SAT solving algorithms are exponential in the worst case (SAT is

NP-hard). Nevertheless, modern SAT solvers successfully cope with different instances from

problem areas mentioned above. The improvement of the effectiveness of SAT solving algorithms,

including the development of algorithms that are able to work in parallel and distributed computing

environments is a very important direction of research.

Let us briefly describe basic features of the SAT@home project. The SAT@home server uses a

number of standard BOINC daemons responsible for sending and processing tasks (transitioner,

feeder, scheduler, etc.). Such daemons as work generator, validator and assimilator were

implemented taking into account the specificity of the project. The work generator decomposes the

original SAT problem to subproblems based on the previously found decomposition parameters. In

SAT@home we use the method for finding such parameters that was proposed in [5]. The work

generator creates 2 copies of each task in accordance with the concept of redundant calculations

1
 http://boinc.berkeley.edu/projects.php

110

used in BOINC. The validator checks the correctness of the results, and the assimilator processes

correct results. When the assimilator finds satisfying assignment in obtained results, it checks this

assignment. If the assignment is correct, then the original problem is marked as solved and the

generation of tasks for this problem stops. The SAT@home client application is based on the SAT

solver MiniSat 2.2 [6], which was slightly modified to use less RAM.

The characteristics of the SAT@home project as of 10 of December 2014 are the following

(according to BOINCstats
2
):

 3246 active hosts (in volunteer computing the host is considered to be active if it has sent at

least one result in the last 30 days) about 80% of them use Microsoft Windows OS;

 1440 active users (active user is a user that has at least one active host);

 versions of the client application for platforms: Windows x86, Windows x86-64, Linux x86,

Linux x86-64;

 average real performance: 4,5 teraflops, maximal performance: 7,9 teraflops (achieved

during the competition held by BOINCstats in October, 2014).

The dynamics of the real performance of SAT@home can be seen at the SAT@home

performance page.

The CluBORun Tool for Integrating Idle Computing Cluster Resources into Volunteer

Computing Projects

As we noted above, the development of the system that would integrate idle computing cluster

resources into volunteer computing projects is highly relevant. It is important to note, that such

system should manage the cluster resources in the same way the BOINC manager does it for the PC

resources, i.e. to not interfere with processes launched by other users of the cluster. In addition, a

significant limitation consists in the fact that such system should rely on standard user rights, and

should not need any assistance from the cluster administrator. Below we will describe the

CluBORun (Cluster for BOINC Run) tool developed according to these conditions.

The final purpose of the CluBORun is to use the BOINC manager to launch client applications

of BOINC projects utilizing the computing cluster computational resources. The use of the BOINC

manager on a particular computing node makes it possible to perform computations for several

different projects simultaneously. It should be noted, that usually all the tasks within the computing

cluster are launched as MPI applications, while the BOINC manager is not designed as one. At the

same time, the BOINC manager has its own functions for grabbing and freeing available resources

of the computing node, on which it is launched (usually, the volunteer computing project host). To

launch the BOINC manager correctly, using standard tools for communicating with the cluster

queue, we developed a special MPI-program start_boinc that is launched on the cluster according to

standard rules (via the mpirun).

Let us describe how the start_boinc works on an arbitrary cluster node. Suppose that the

considered node has n processor cores (hereinafter by these we mean only CPU cores). Since the

start_boinc program is a standard MPI application, it means that MPI environment tools allow it to

use n MPI processes. On one MPI process, to which we will refer as master process, it starts the

BOINC manager. Remaining n-1 processes are not employed by the start_boinc program. We will

refer to these n-1 processes as sleeping processes. After having been launched the BOINC manager

“sees” all the available resources of the node: both those that correspond to the sleeping MPI

processes and the one it is launched on. After this the BOINC manager employs all the available

node resources as if it were the idle resources of the volunteer computing host. If it is necessary to

interrupt the computations, the start_boinc program sends a corresponding command to the BOINC

manager. The BOINC manager processes the command and performs the required actions: saves

intermediate computations results, sends results for processed subproblems back to project server

and stops.

2
 http://boincstats.com/en/stats/123/project/detail/

111

CluBORun minimizes the impact on the work of other users by means of automatic system that

distributes the computing cluster idle resources (to which we will refer as distribution system). This

system interconnects with the computing cluster job scheduler using standard user rights in the

following manner: it periodically monitors the current cluster queue and takes only the idle

resources as a usual user would. In the process of monitoring, one has to take several features into

account. For example, even if there are a lot of idle resources, the distribution system should not

take it for a long time since in this case it is possible that some users will be “scared” when they see

that the cluster is fully loaded. So if the distribution system takes idle resources only for a short time

and corresponding information is displayed in the queue, then such situation can be avoided – the

user puts its job into the queue knowing that soon the resources will be freed. If the distribution

system puts the jobs for several hours and there appear the jobs from other users in the cluster queue,

then the distribution system should be able to withdraw its jobs, saving the intermediate results and

freeing the computational resources. The distribution system in CluBORun is organized in the form

of two scripts – one monitors the cluster queue and another launches the start_boinc program on the

idle nodes.

Structurally the CluBORun tool consists of the following components.

1. The folders corresponding to MPI tasks start_boinc that should be solved on the cluster

(each of the tasks launches one or several instances of the BOINC manager).

2. Indicator files corresponding to MPI tasks start_boinc: if it is possible to launch a particular

MPI task then a start flag is created and if it is necessary to interrupt it then the stop flag is

created.

3. Text file all_tasks.txt – the list of MPI tasks that need to be launched. For each task in this

file the following information is written: the start flag file name, the stop flag file name and

the path to the folder corresponding to this task.

4. The script catch_node.sh which monitors the cluster queue and creates the start/stop flags to

communicate with the start_boinc.sh script.

5. The script start_boinc.sh that starts and stops MPI tasks start_boinc.

Scheme of launching BOINC computations on computing cluster with the help of CluBOrun tool

is shown in the Figure 1.

Fig. 1. Scheme of launching BOINC computations by CluBORun

Further, let us briefly describe how the CluBORun tool works. It performs all actions under the

name of the user with standard rights, i.e. which can put its MPI tasks to the cluster queue. Using

the standard cron scheduler the rule is created: to run the catch_node.sh script regularly with short

time interval (for example, every minute). This script analyzes the cluster queue using standard

commands available to any cluster user. In particular, the catch_node.sh script requests the list of all

launched tasks and the list of tasks in queue (if any). Analyzing this information the script, based on

the number of idle nodes and the composition of cluster queue, determines how many BOINC tasks

are already running and how many tasks can be started. The result of this analysis is the list of MPI

tasks start_boinc and the list of cluster nodes on which these tasks can be started at the moment. All

these tasks are assigned the start flag. Similarly if the catch_node.sh determines that in the queue

112

there are tasks from other users that await their turn then it interrupts several (possibly all) running

start_boinc tasks. The stop flag is put in the folders of the corresponding problems.

The start_boinc.sh periodically scans the folders of MPI tasks start_boinc. If in some folder there

is a start flag then it starts the corresponding task on an available cluster node in a usual manner (via

the mpirun). If start_boinc.sh finds in the folder of some problem that there is a stop flag then it

interrupts the corresponding task. After receiving from the start_boinc.sh the command to interrupt

the work all the master processes of start_boinc send similar commands to the BOINC managers

launched within them. The latter then save the intermediate results and free the cluster resources.

Computational Experiments

The main technical issue that arises when one wants to connect a new cluster to some volunteer

computing project using the CluBORun tool consists in the fact that different clusters use different

job schedulers. Therefore, the algorithms described above have to be implemented individually for

each scheduler. At the present moment the CluBORun tool is able to work with three cluster job

schedulers: SUPPZ
3
, Cleo

4
 and SLURM

5
. In this list the SUPPZ and the Cleo systems are

developed in Russia and the SLURM system is an international product.

In order to increase the performance of the SAT@home project CluBORun was launched in

December 2013 on the MVS-100k
6
 cluster. This cluster uses the SUPPZ job scheduler. The

CluBORun tool made it possible to employ a significant portion of idle computing nodes. So, from

5 to 12 March, 2014, on average 1824 cluster cores were idle and 512 of them were employed to

perform computations for the SAT@home via CluBORun. At some periods of time the contribution

of the MVS-100k cluster to the performance of the SAT@home project reached 40%. Using these

resources it was possible to carry out the following experiments in the SAT@home.

 Solved 10 cryptanalysis instances for the A5/1 keystream generator [7]. In each instance

only the information about first 114 bits of keystream (one burst) was used.

 Solved 3 weakened cryptanalysis instances for the Bivium cipher. The instances were

weakened by setting the known values to the variables corresponding to the last 10 of 177

bits of the registers initial values. In this series of experiments the keystream fragment of

length 200 bits was used.

 Found 17 new pairs of orthogonal diagonal Latin squares of order 10 (previously only 3

such pairs were published in [8]).

Since the October 2014 the CluBORun tool is used to increase the performance of the volunteer

computing project OPTIMA@home
7
 (it too uses the idle resources of the MVS-100k cluster). This

project was developed specifically to implement modern numerical optimization algorithms. At the

present moment the OPTIMA@home project is used to solve several minimization problems for

functions that arise in molecular dynamics when modeling the properties of various materials.

Using the CluBORun tool it was possible to carry out the research of the precision of parameters

identification for multiatom Tersoff potential for the crystalline silicon.

Conclusions

In the present paper we described the technology that can be used to integrate idle computing

cluster resources into volunteer computing projects and the implementation of this technology in the

form of the CluBORun tool. In the nearest future, we plan to extend CluBORun with an ability to

work with other with PBS TORQUE
8
. The CluBORun source code can be found online

9
.

3
 http://suppz.jscc.ru/

4
 http://parcon.parallel.ru/cleo.html

5
 http://slurm.schedmd.com/

6
 http://www.jscc.ru/hard/mvs100k.shtml

7
 http://boinc.isa.ru/dcsdg/

8
 http://www.adaptivecomputing.com/products/open-source/torque/

9
 https://github.com/Nauchnik/CluBORun

113

Acknowledgements

Authors thank Stepan Kochemazov for numerous valuable comments that allowed us to

significantly improve the quality of the paper. This work was partly supported by Russian

Foundation for Basic Research (grants № 13-07-00291-a, 14-07-00403-a, 15-07-07891-a), the

Council at the President of the Russian Federation for the State Maintenance of the Leading

Scientific Schools (project NSh–5007.2014.9) and the Special Program of Russian Academy of

Sciences № 14.

References

[1] Durrani M.N. & Shamsi J.A.: Volunteer computing: requirements, challenges, and solutions.

Journal of Network and Computer Applications. Vol. 39, pp. 369-380. 2014.

[2] Anderson D.P. BOINC: A System for Public-Resource Computing and Storage. In: Buyya, R.

(ed.) GRID. IEEE Computer Society. pp. 4-10. 2004.

[3] Posypkin M.A., Semenov A.A. & Zaikin O.S. Using BOINC desktop grid to solve large scale

SAT problems. Computer Science. Vol. 13, no 1. pp. 25-34. 2012.

[4] Biere A., Heule M., van Maaren & H., Walsh T. (eds.). Handbook of Satisfiability, Frontiers in

Artificial Intelligence and Applications. Vol. 185. IOS Press. 2009.

[5] Semenov A.A. & Zaikin O.S. On estimating total time to solve SAT in distributed computing

environments: Application to the SAT@home project. arXiv:1308.0761 [cs.AI].

[6] Een N. & Sorensson N. An Extensible SAT-solver. Lecture Notes in Computer Science. Vol.

2919. pp. 502–518. 2003.

[7] Semenov A.A., Zaikin O.S & Otpuschennikov I.V. Using Volunteer Computing for Mounting

SAT-based Cryptographic Attacks. arXiv:1411.5433 [cs.DC].

[8] Brown J.W. et al. Completion of the Spectrum of Orthogonal Diagonal Latin Squares. Lecture

notes in pure and applied mathematics. Vol. 139. pp. 43–49. 1992.

[9] Semenov A.A., Zaikin O.S., Bespalov D.V. & Posypkin M.A. Parallel Logical Cryptanalysis of

the Generator A5/1 in BNB-Grid System // Lecture Notes in Computer Science. Vol. 6873. pp

473-483. 2011.

[10] Farkas Z., Kacsuk P., Balaton Z. & Gombas G. Interoperability of BOINC and EGEE // Future

Generation Computer Systems. Vol. 26, no. 8. pp. 1092-1103. 2010.

114

https://kias.rfbr.ru/Application.aspx?id=10521378
http://journals.agh.edu.pl/csci/article/view/37
http://journals.agh.edu.pl/csci/article/view/37
http://arxiv.org/abs/1411.5433
http://arxiv.org/abs/1411.5433
http://link.springer.com/chapter/10.1007%2F978-3-642-23178-0_43
http://link.springer.com/chapter/10.1007%2F978-3-642-23178-0_43
http://link.springer.com/chapter/10.1007%2F978-3-642-23178-0_43

