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Abstract. Today, a huge amount of unstructured tabular data is contained in tables from different 

sources, e.g. image documents, web pages, and spreadsheets. Sometimes these tables are only 

available data source. To use that information in business intelligence we need to transform data 

from these tables to structured form like relational databases. We propose an approach to the tabular 

data transformation from unstructured (spreadsheets) to structured (relational databases) form using 

a rule engine. Our table interpretation rules can use spatial, style (typographical), and natural 

language information from tables. The experimental evaluation shows that the approach can be 

applied to a wide range of tables from statistical and financial reports. 

Introduction 

Nowadays, many researchers in data management, e.g. [1-4], note that issues on unstructured data 

integration become increasingly important. Unstructured data usually refers to any information that 

does not have a predefined formal data model or does not fit into a table of a relational database. 

The documents, web pages, and spreadsheets may contain tables, which do not have any formal 

data model. These tables are intended to be interpreted by humans but not designed for high-level 

machine processing like SQL queries. 

In practice, the transformation of tabular data from unstructured to structured form is required in 

many cases. For example, tables presented in unstructured form are often the only available source 

of statistical or financial information. But only after transforming information from these tables to 

databases it is available for using in business intelligence, including online analytical processing, 

data mining, and knowledge discovery. 

To transform tabular data we need to automate table understating, which is consists in recovering 

relationships among entries (data values), labels (attributes), and dimensions (categories) [5]. As 

Hurst [6] notes, the table understanding involves the following steps: (1) table location (to detect 

positions of a table inside a source); (2) table recognition (to recover individual cells); (3) functional 

analysis (to find attributes and data in cells, i.e. to recover cell roles); (4) structural analysis (to 

recover relationships between cells); and (5) interpretation (to extract facts from a table, e.g. 

relationships between labels and dimensions). 

The present work is restricted to the issues: how to recover semantic relationships in a table (i.e. 

cell-role, label-value, label-label, and label-dimension pairs). In terms of Hurst [6], we suggest to 

automate the following steps of table understanding: functional analysis, structural analysis, and 

interpretation. 

There are several challenges in the table understanding. A table can be produced or generated by 

a huge amount of ways. Table features originate from typographical standards, corporative practice, 

ad hoc software, data formats, and human inventiveness. To reduce the complexity of table 

understanding the existing methods use various assumptions (heuristics) about tables. Usually those 

assumptions are entirely embedded in their algorithms. It constrains a range of tables, which can 

successfully be understood by them. 

We assume that tables produced by the same vendor often have similar structures, styles, and 

content. It allows defining a set of production rules for describing how these tables can be analyzed 

and interpreted. We propose to develop separate sets of table interpretation rules (knowledge bases) 

for different sets of similar tables. In that case, the process of the table understanding is performed 
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as rule firing. It provides processing of a wide range of tables having various complex structures 

and features. 

We develop the CELLS system based on the proposed approach. The system is designed for 

integrating unstructured tabular data. It allows extracting data from tables presented in Excel 

spreadsheet files and generating tables in structured (canonical) form. The system use Drools Expert 

(drools.org) as a rule engine. Table interpretation rules are expressed in MVEL (mvel.codehaus.org) 

expression language. The experimental results demonstrate that the system can be applied for 

populating a database from spreadsheets with unstructured tabular information. 

Tabular Data 

Unstructured tabular data, including spatial, style, and natural language content of cells, can be 

obtained from Excel spreadsheets by existing tools (e.g. Apache POI). This information can be used 

to generate facts, which are asserted into a working memory for logical inference. To represent 

those facts about cells we propose a table model. Our table model is based on the set of general 

assumptions about cells, which are described the class of processing tables. 

1.1 General assumptions for tables 

1. A cell is characterized by the positions (coordinates) in the column and row space, style, and 

content. 

2. A cell can be located on several consecutive rows and columns, i.e. it can cover a few grid tiles, 

which always form a rectangle. 

3. A cell can contain only text.  

4. A cell can serve as either entry (data value) or label (attribute).  

5. An entry represents a data value and a label describes entries.  

6. A label can address entries and other labels either in rows or columns only thus labels can form 

hierarchical relationships among themselves.  

7. A label can be a value of a dimension. 

An example of a table with those relationships is shown in Fig. 1. 

 

 
Fig.1: Relationships in a table 

1.2 Table model 

The model is designed to present facts about a table in process of logical inference. It consists of 

two levels: physical and logical. The first of them presents the visual composition of a table. The 

second level is intended for presenting the semantic composition of a table. 

The physical level describes geometric positions, styles (settings of the graphical formatting) and 

textual content of cells. This level  CSST crp ,,  consists of the following sets. 
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1. 
rS is a set of rows and cS  is a set of columns. 

2. C is a set of cells where each cell  Gpcc ,,  includes: content c ; coordinates 

 brtl rcrcp ,,,  in the rows 
rS  and columns cS  ( lc  is a left column, tr  is a top row, rc  is a 

right column, and br  is a bottom row); a set of style settings (font metrics, colors, text alignment, 

borders, etc.) G . 

The logical level presents semantic relationships (i.e. cell-role, label-entry, label-label, and label-

dimension pairs). 

This level  ELLDT crl ,,,  consists of the following sets. 

1.  iDD   is a set of dimensions presented in the processed table. Each of them is a set of 

dimension values  
ji dD  . 

2. 
rL  is a tree of row labels and cL  is a tree of column labels. These trees present relationships 

between their labels. Each label  ll   has content l , which is not a value of any dimension iD . 

3. E  is a set of entries where each entry  LDee  ,,  includes: content e ; a set of values from 

dimensions iD  related with this entry D , a set of labels from trees rL  and cL  related with this 

entry L . 

Table Interpretation Rules 

a 

when 

  $c : CCell(rt == 1, cl > 1) 

then 

  modify ($c) { setRole(Role.COLLABEL) } 

b 

when 

  $c : CCell(style.getFont().getColor() == "#0000ff") 

then 

  modify ($c) { setRole(Role.ENTRY) } 

c 

when 

  $c1 : CCell() 

  $c2 : CCell(rt == $c1.rb + 1, $c1.cl <= cl && cr <= $c1.cr)  

then 

  $c1.addConnectedCell($c2) 

d 

when 

  $d : CDimension(name == "YEAR") 

  $c : CCell (cl == 1, text matches "[2][0][0-1][0-4]") 

then 

  $c.setDimension($d) 

Fig.2: Samples of table interpretation rules 

 

Table interpretation rules define how we can interpret what we know (i.e. positions, style settings, 

and content of cells in a table) to recover what we do not know (i.e. semantic relationships in the 

table). The left hand side (when) of a rule defines conditions using known facts about cells and 

dimensions. The right hand side (then) of a rule recovers unknown facts about a table, including 

assignment cell roles (label or entry), binding cells (i.e. creating label-entry, label-label, and label-

dimension pairs). 

The Fig 2 shows the following samples of table interpretation rules: if a cell is located in the 1st 

row and not 1st column then it serves as a column label ― (a); if the background of a cell is blue 

(#0000ff) color then it serves as an entry ― (b); if a cell is directly located above another cell 

spanning it in columns completely then they are connected ― (c); if a cell is located in the 1st 
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column and contains a text matching the regular expression “[2][0][0-1][0-4]” then it is a value of 

the dimension “YEAR” ― (d). 

The rule engine matches known facts about cells and dimensions (their value ranges) against 

those production rules. In the result of firing the rules we recover table semantic relationships (the 

logical level of our model). Additionally, after rule firing, we try to harmonize extracted labels and 

data, using dictionaries with reference values. Also, we try to detect dimension values among labels, 

using dictionaries with dimension values. Recovered semantic relationships are used to generate the 

table in the structured (canonical) form. It includes the following fields: DATA contains data 

(entries); RLABEL contains label paths from leaves to roots in the non-degenerate tree
rL ; 

CLABEL contains label paths from leaves to roots in the non-degenerate tree cL ; the set of fields 

D1,..., DN contain values of the corresponding dimensions iD . 

 
Fig.3: The table in the structured (canonical) form 

 

Each tuple in the canonical form presents the relationships between the entry, the label path in 

the tree rL , the label path in the tree cL , and values of the recovered dimensions iD . In the ideal 

case where each label is assigned to a dimension the label trees become degenerate and the 

canonical form does not include RLABEL and CLABEL fields. Generated canonical forms can be 

exported into a relational database using standard tools of database management systems. The 

example of canonical form is shown in Fig.3. 

Experimental Evaluation 

For experimental evaluation we formed the collection of test data that includes 97 tables in Excel 

spreadsheets collected from 7 different sources (public governmental statistical and financial 

reports). They contain 17716 cells (including 10243 entries and 2872 labels) and 1614 internal 

relationships only between labels (excluding relationships from roots of label trees). We developed 

7 knowledge bases separately for every source. They contain from 10 to 16 rules. We evaluated 

only the recovering of entries, labels, and internal relationships only between labels without 

external relationships between labels and dimensions. All entries, labels, and internal relationships 

were recovered with absolute accuracy. Rule firing took about 4 seconds on the processor Intel Core 

2 Quad, 2,66 GHz. The test collection and experimental results are available at address 

http://cells.icc.ru/test. 

Related Work 

Existing methods for table understanding can be divided into two groups: (1) domain-specific [7-9] 

and (2) domain-independent [10-15]. 

The domain-specific methods are based on using ontologies or knowledge bases describing a 

particular domain. These methods allow binding natural language content of a table with concepts 
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of the particular domain. For instance, the method from the TANGO project [7] is based on a 

library of frames containing knowledge about lexical content of tables. Each frame describes a data 

type using regular expressions, dictionaries, and open resources like the lexical database WordNet. 

Embley et al. [8] use ontologies developed specially for information extraction. In addition to 

objects, relationships and constraints the extraction ontology includes a set of data frames, which 

are associated with sets of objects.  Those data frames allow binding table content with objects of 

the ontology using regular expressions. Wang et al. [9] consider the problem of understanding a 

web table as associating the table with semantic concepts presented in the PROBASE knowledge 

base. 

The listed above methods [7-9] principally use an analysis of natural language content from 

tables. It is not always enough in practice. Information extraction from tables often requires an 

analysis of spatial and style information for high accuracy. 

The domain-independent methods [10-15] are based on an analysis and interpretation of spatial, 

style and text information from tables instead of using external knowledge on a specific domain. 

For instance, Gatterbauer et al. [10] propose to use only an analysis of spatial and style information 

in CSS2 format. Their method is based on assumptions about style information designed for several 

common types of web-tables. Also Pivk et al. [11, 12] suggest a methodology and TARTAR system 

for automatic transforming HTML tables into logical structured form (semantic frames). The 

TARTAR system is based on heuristics on structure and text content of a table, which are designed 

for three typical table types. Kim et al. [13] use an analysis of spatial, style, and natural language 

information from web tables based on embedded rules and regular expressions for five table types. 

The recent papers [14, 15] discuss the method for transforming data from web tables to a relational 

database. The method provides grouping attributes into categories, using only an analysis of table 

structure. It is based on several embedded in algorithms assumptions on regular structure of pivot 

tables. 

The mentioned domain-independent methods [10-15] are based on using a limited set of 

assumptions on table structures, styles, and content which originate from a few common types of 

tables. These assumptions are embedded in the proposed algorithms. They limit classes of tables, 

which can be analyzed and interpreted by those methods with high accuracy. 

Conclusions 

We propose the rule-based system to table understanding, using both domain independent (spatial 

and style) information and domain-specific (natural-language) information. The system provides 

analysis and interpretation for tables with complex structures. In particularly, it enable processing 

table features like cut-ins (headers in a table body), non-numerical data values, the duplication of 

multilingual labels, label columns, which are alternated by data columns. 

We also use assumptions about table structures, styles and content. But, in contrast to the 

existing methods for table understanding, we divide assumptions into two parts: general and special. 

The first constant part is the general assumptions. They describe a wide class of tables. Our model 

is based on them. The second variable part is special assumptions about spatial, style and natural 

language features of tables. They are expressed as sets of table interpretation rules. These special 

assumptions are combined into sets (knowledge bases), which are designed for different subclasses 

of tables. That approach allows reaching the table understanding with high or even absolute 

accuracy for particular subclasses of tables within the class limited by the general assumptions. 

Perhaps, the main application of our approach is the unstructured tabular data integration. The 

described principles of table understanding can be used in developing software for unstructured 

tabular data integration in business intelligence and information extraction from financial reports.  

We discuss our approach in more detail in the paper [16]. 
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