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Abstract. The rapid progress of large language models in recent years has opened new opportunities for 
human-robot interaction. In this paper, we propose a novel approach to control drones using natural language 
commands by integrating OpenAI ChatGPT with the PX4/Gazebo simulator. The proposed system enables 
users to interact with the simulator using everyday language, allowing them to control the drone's actions 
with ease, eliminating the need for extensive training in drone piloting. We discuss the implementation 
details, including the validation of the ChatGPT-generated commands and their translation into executable 
actions in the simulator. To the best of our knowledge, this is the first proposal of a verification and 
validation system for commands generated by ChatGPT and LLMs in general. Furthermore, we discuss the 
crafting of effective prompts and the essential criteria for doing so. Our approach demonstrates promising 
results in terms of both usability and reliability, paving the way for further research on natural language-
based control systems for robotics applications. 

Keywords: LLM, ChatGPT, PX4, Gazebo, UAV, AI-assisted control, prompt engineering, Commands 
validation. 

1. Introduction 
The recent rapid progress in natural language processing (NLP) has led to the development of large 

language models (LLMs) such as GPT-3 [1], GPT-4 [2] and Codex [3] that have proven effective in text 
generation, machine translation, and code synthesis. OpenAI ChatGPT [4], a pretrained generative text 
model, is an impressive addition to the field, with exceptional interaction skills through the combination of 
text generation and code synthesis. Despite these successes, the application of LLMs to robotic tasks remains 
a challenge due to the need for a deep understanding of real-world physics, the environment, and the ability 
to perform physical actions. Developing a generative robotics model requires a robust common sense 
knowledge, a sophisticated world model, and the ability to interpret and execute commands physically and 
coherently. 

As robots become more integrated into our daily lives, there is a growing need to facilitate human-robot 
interaction, particularly in drone control. Drones have found numerous applications in various fields, such as 
surveillance, package delivery, and agriculture, etc. However, their operation often requires technical 
knowledge, making them less accessible to non-experts. Natural language-based interfaces present a 
promising solution that could enable intuitive and accessible drone control. In response to this need, we have 
developed a chatbot program that interfaces with a PX4/Gazebo [5] drone simulation, leveraging the OpenAI 
API to generate responses to user queries and commands. 

PX4/Gazebo is a popular open-source simulator for testing drone control algorithms and developing 
autonomous drone applications. Integrating natural language control in the simulator can serve as the first 
step to validate a more intuitive control method for drones. In this paper, we propose an approach to integrate 
ChatGPT with PX4/Gazebo, enabling users to control the drone in the simulator using natural language 
commands. By interfacing with this simulator, our program offers a realistic and safe environment for users 
to practice and experiment with drone control. Additionally, the program has the ability to run XML code in 
the PX4/Gazebo environment, allowing users to test and refine their own drone control algorithms. 
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2. Related Works 

In this section, we will discuss relevant literature on natural language-based control systems for robots, 
large language models (LLMs) in robotics, and drone control using natural language. 

2.1. Natural language-based control systems for robots 
The development of natural language processing (NLP) techniques has opened up new possibilities for 

human-robot interaction. One area of interest is the control of robots using natural language commands, 
which can significantly improve the accessibility and ease of use of robotic systems. Tellex et al. [6] 
proposed a system that translates natural language commands into robot control policies using a probabilistic 
graphical model. They demonstrated the effectiveness of their approach in controlling a robotic forklift. 

Guadarrama et al. [7] introduced a semantic parsing approach to understand natural language commands 
and convert them into executable robot actions. It grounds the meaning of input sentences in terms of visual 
percepts from the robot's sensors, enabling the robot to understand and execute complex commands 
involving multiple objects and spatial relationships. This enables the PR2 robot to execute appropriate 
commands or respond to spatial queries. 

2.2. Large language models in robotics 
With the advent of LLMs, such as GPT-3, the capabilities of NLP models have significantly improved, 

allowing for more sophisticated natural language understanding and generation tasks. Researchers have 
started exploring the use of these models in robotics applications.  

The paper [8] investigates whether pre-trained LLMs can extract actionable knowledge for grounded 
tasks in interactive environments. The authors demonstrate the feasibility of this approach by grounding 
high-level tasks expressed in natural language to a chosen set of actionable steps.  

Another study, [9] explores the use of LLMs trained on code-completion to write robot policy code given 
natural language commands. This approach is demonstrated across multiple real robot platforms and 
achieves state-of-the-art results on the HumanEval benchmark.  

Singh et al. in [10] presents PROGPROMPT, a programming language structure that uses LLMs to 
generate robot task plans. The authors demonstrate the success of this approach in VirtualHome household 
tasks and on a physical robot arm for tabletop tasks.  

The paper ”LATTE: LAnguage Trajectory TransformEr” [11] proposes a language-based framework for 
modifying generic robotic trajectories using pre-trained language models. The authors show that this 
approach can successfully follow human intent, modifying the shape and speed of trajectories within 
multiple environments.  

2.3. Drone Control using Natural Language 
There have been several efforts to develop natural language interfaces for drone control. A recent paper 

[12] explores the use of OpenAI’s ChatGPT for robotics applications, including drone control. The authors 
propose a strategy that combines prompt engineering principles with a high-level function library, allowing 
ChatGPT to adapt to different robotics tasks and simulators. They integrate ChatGPT with Microsoft AirSim 
simulator [13] and demonstrate the effectiveness of this approach in executing various types of robotics tasks 
[14], showing that ChatGPT can be effective while allowing users to interact with it through natural language. 

Our work sets itself apart from existing literature by offering several distinct contributions: 
1. Achieving a successful integration of OpenAI's ChatGPT API with the PX4/Gazebo platform. 
2. Enabling drone control in natural language through the Pixhawk autopilot (commander). 
3. Developing and implementing  a verification and validation system for commands generated by 

ChatGPT, ensuring the reliability and safety of the natural language-based control approach. 
4. Identifying and outlining the most relevant criteria for crafting effective prompts that guarantee the 

generation of zero-shot responses, providing valuable insights for future research and applications 
involving human-robot interaction and large language models. 
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3. Methodology 

In this section, we describe the proposed system's implementation, including the integration of ChatGPT 
with PX4/Gazebo, the validation of generated commands, and the translation of these commands into 
executable actions in the simulator. 

3.1. Integration of ChatGPT with PX4/Gazebo 
In this work, we have developed a system that enables users to control the drone through natural 

language input. The input is processed by the ChatGPT API, which generates appropriate commands for 
execution. The system employs the PX4 flight stack to manage drone control and perform various tasks. 

The developed system establish a chatbot that interfaces with the PX4/Gazebo simulator, utilizing 
OpenAI's GPT-3.5-Turbo model to respond to user queries and commands. The integration process involves 
setting up a connection between the chatbot and the simulator. We develop a Python-based middleware to 
create a communication channel that serves as an interface between ChatGPT and the PX4/Gazebo simulator. 
This middleware processes the natural language inputs, forwards requests to ChatGPT, retrieves responses, 
and generates commands for the simulator. Upon initialization, the middleware connects to the Gazebo 
environment, facilitating communication with the simulated drone. 

We structure the chatbot to operate in a loop where it waits for user input, sends the user's message and 
chat history to the OpenAI API to generate a response, appends the response to the chat history, and prints it 
to the console. This systematic approach ensures seamless interaction between the user and the drone 
simulation, resulting in an efficient and user-friendly natural language-based drone control system. 

3.2. Command Generation 
The command generation process involves the use of user-provided prompts to guide ChatGPT in 

generating more specific and relevant responses. The developed system requires two input files: one for the 
temporary prompt, which is used to initialize the discussion, and the second for the permanent prompt, which 
is injected throughout the discussion to control the generated responses. 

The act of defining these two prompts is called "prompt engineering" and it is an area an active research 
[15-16]. In the following, we will define the most relevant criteria for defining effective prompts that ensure 
zero-shot response generation. 

3.3. Defining the context 
A well-defined context is essential for guiding ChatGPT to generate responses relevant to the problem 

domain. The prompt should provide sufficient information about the domain, in this case, controlling drones 
in the PX4/Gazebo simulator (Figure 1). By setting the context, ChatGPT can focus its responses accordingly 
and maintain consistency with the target system. 
 

 
Fig. 1: Defining the context for ChatGPT. 

3.4. Defining the role of ChatGPT 
Specifying the role of ChatGPT is crucial for shaping its behavior and the type of responses it generates. 

Clearly state the role, describing the purpose and the support it should provide to the user. In the given 
example, ChatGPT is assigned the role of an assistant, which helps the model understand that it is expected 
to provide guidance and support in the form of PX4 commands and explanations (figure 2). 
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Fig. 2: Defining the role of ChatGPT. 

3.5. Describing the environment  
Providing information about the environment in which the task is being performed. This may include 

details about the simulator, the physical world, or any specific conditions that are relevant to the task (figure 
3). This helps ChatGPT generate more accurate and contextually appropriate responses or actions. 
 

 
Fig. 3: Describing the environment. 

3.2.4． Defining the allowed functions 
To ensure that ChatGPT generates responses consistent with the given functionality and constraints, the 

prompt should explicitly list the available functions and prohibit the use of any other functions (Figure 4). 
This approach helps maintain compatibility with the target system and avoids generating unusable or 
erroneous responses. 
 

 
Fig. 4: Defining the allowed functions. 

3.2.5. Defining the output format 
Establishing the desired output format in the prompt is essential for maintaining consistency across 

responses and ensuring compatibility with the target system. In the given example, the prompt specifies the 
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XML format for the generated responses, which allows the system to parse and process the responses as 
required (figure 5). 

 
Fig. 5: Defining the output format. 

3.2.6. Defining constraints 
Including any limitations or constraints that should be adhered to by ChatGPT, such as computing 

checksums, character limits, or any other restrictions that apply to the task. In our case, the checksum 
algorithm is provided for command validation and system reliability (figure 6). By defining such constraints, 
the prompt guides ChatGPT to produce responses that are both accurate and usable in the target system. 
 

 
Fig. 6: Defining constraints. 

3.2.7. Handling ambiguity  
Providing guidance on how the model should handle ambiguous queries or when it lacks sufficient 

information to generate a confident response. This could involve asking clarifying questions or suggesting 
alternative solutions (figure 7). 
 

 
Fig. 7: Handling ambiguity. 

3.2.8. Summarizing everything in an example 
Providing a well-structured example in the prompt helps ChatGPT understand the desired output format 

and the relationship between different components, such as command and checksum, in the response (figure 
8). The example serves as a template for the model to follow, ensuring that generated responses align with 
the established criteria and requirements of the target system. 
 

 
Fig. 8: Summarizing everything in an example. 

3.6. Command Validation 
Validating the generated commands is crucial for ensuring the reliability and safety of the drone control 

system. In this subsection, we detail the steps involved in the command validation process, which includes 
checking the command's syntax, and calculating the command checksum. 
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3.6.1.  Syntax Validation 

The first step in the validation process is to examine the syntax of the generated command. This is 
achieved by implementing a syntax parser that checks if the command adheres to the specified format, as per 
the PX4/Gazebo simulator requirements. Any commands failing to meet these requirements are flagged as 
invalid and not executed. 
3.6.2.  Checksum Calculation and Verification 

To further enhance the reliability of the system, a checksum is calculated for each generated command. 
The checksum algorithm is detailed in the prompt provided to ChatGPT and involves the following steps: 

1. Encode the command as bytes using the UTF-8 encoding. 
2. Sum the byte values of the encoded command. 
3. Take the result modulo 256 to get the 8-bit checksum value. 
4. Return the checksum value as a 2-digit hexadecimal string. 

The calculated checksum is then compared with the checksum provided by ChatGPT in its response. If 
the checksums match, the command is considered valid and proceeds to execution. If the checksums do not 
match, the command is deemed invalid and not executed, prompting the user to either modify the input or 
request a new command from ChatGPT. 

Upon receiving a response from ChatGPT, the middleware validates the command. This algorithm 
checks the consistency and accuracy of the generated command to ensure it adheres to the established 
command structure and avoids potential errors. If the command passes the validation process, it proceeds to 
the translation phase; otherwise, the middleware requests an alternative command from ChatGPT or alerts 
the user. 

3.7. Translation of Commands into Simulator Actions 
Once a valid command is generated, the middleware translates the natural language command into an 

executable action for the PX4/Gazebo simulator. This process involves mapping the command to a 
corresponding MAVLink message that the simulator can interpret and execute. The middleware sends the 
appropriate MAVLink messages corresponding to the received commands, allowing the drone to perform the 
desired actions within the Gazebo environment. 

By following these steps, we implement a natural language-based control system that seamlessly 
integrates ChatGPT with the PX4/Gazebo simulator. This system allows users to control a drone in a 
simulated environment using intuitive and accessible natural language commands. 

4. Experiments 
The system developed in this work provides an intuitive and user-friendly interface for drone control, 

allowing users to control the drone using natural language inputs. The results of the discussion shown in 
Figure 9 demonstrate the successful implementation of the natural language-based drone control system. 

 
Fig. 9: Example of ChatGPT conversation and generated commands 
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The chatbot was able to understand and respond to user prompts accurately, allowing for seamless 

control of the drone in the simulation environment. The system was tested on several tasks, including arming 
and disarming the drone, changing the drone’s flight mode, and executing simple flight patterns, etc. 

4.1. Command Generation Accuracy 
To assess the command generation accuracy, we designed a set of test scenarios consisting of various 

natural language inputs representing different drone actions. We then evaluated the generated commands 
based on their correctness and compliance with the established command structure. To achieve a 
comprehensive assessment, we requested ChatGPT to generate 30 distinct natural language models for each 
of the primary commands, including arming, disarming, taking off, landing, and mode changes. 

Table 1: Command Generation Accuracy Results 
Test Scenario Number of Correct Commands Total Commands Accuracy (%) 
Arming  28 30 93.3 
Disarming 26 30 86.6 
Take-off 30 30 100.0 
Landing 27 30 90.0 
Mode Changes 25 30 83.3 
Total / Average 136 150 90.6 

 
Table 1 shows the results of the command generation accuracy experiment. The table presents the 

number of correct commands generated by ChatGPT and the corresponding accuracy for each test scenario. 
The table shows that the overall command generation accuracy is 90.6%, indicating that ChatGPT can 
effectively generate correct and valid commands for the PX4/Gazebo simulator based on natural language 
input. 

5. Conclusion  
This paper has presented a novel approach to enabling natural language interaction between users and the 

PX4/Gazebo drone simulator using OpenAI's ChatGPT. We have detailed the system architecture, the 
command generation and validation processes, and the translation of commands into simulator actions. 
Additionally, we have proposed a set of criteria for designing effective prompts to ensure zero-shot response 
generation. 

Through a series of experiments, we have demonstrated the efficacy of our approach in generating 
accurate and relevant commands from natural language input. The results showcase the potential of 
leveraging advanced language models like ChatGPT to facilitate intuitive and efficient interaction between 
humans and robotic systems. 

In future work, we aim to refine the prompt engineering process to improve response quality further and 
extending the approach to other simulators or real-world robotic systems. Additionally, we plan to focus on 
the development and utilization of our own methods for localization, trajectory planning, and obstacle 
avoidance, rather than relying solely on the functions predefined in the PX4 commander. Overall, this 
research contributes to the ongoing efforts to bridge the gap between human-robot communication and paves 
the way for more accessible, user-friendly interfaces in robotics. 
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