

2023 the 13th International Workshop on Computer Science and Engineering (WCSE 2023)

From Words to Flight: Integrating OpenAI ChatGPT with
PX4/Gazebo for Natural Language-Based Drone Control

Mohamed Lamine TAZIR1+, Matei MANCAS1 and Thierry DUTOIT1
1 ISIALAB, Numediart Institute, University of Mons, Mons, Belgium.

Abstract. The rapid progress of large language models in recent years has opened new opportunities for
human-robot interaction. In this paper, we propose a novel approach to control drones using natural language
commands by integrating OpenAI ChatGPT with the PX4/Gazebo simulator. The proposed system enables
users to interact with the simulator using everyday language, allowing them to control the drone's actions
with ease, eliminating the need for extensive training in drone piloting. We discuss the implementation
details, including the validation of the ChatGPT-generated commands and their translation into executable
actions in the simulator. To the best of our knowledge, this is the first proposal of a verification and
validation system for commands generated by ChatGPT and LLMs in general. Furthermore, we discuss the
crafting of effective prompts and the essential criteria for doing so. Our approach demonstrates promising
results in terms of both usability and reliability, paving the way for further research on natural language-
based control systems for robotics applications.

Keywords: LLM, ChatGPT, PX4, Gazebo, UAV, AI-assisted control, prompt engineering, Commands
validation.

1. Introduction
The recent rapid progress in natural language processing (NLP) has led to the development of large

language models (LLMs) such as GPT-3 [1], GPT-4 [2] and Codex [3] that have proven effective in text
generation, machine translation, and code synthesis. OpenAI ChatGPT [4], a pretrained generative text
model, is an impressive addition to the field, with exceptional interaction skills through the combination of
text generation and code synthesis. Despite these successes, the application of LLMs to robotic tasks remains
a challenge due to the need for a deep understanding of real-world physics, the environment, and the ability
to perform physical actions. Developing a generative robotics model requires a robust common sense
knowledge, a sophisticated world model, and the ability to interpret and execute commands physically and
coherently.

As robots become more integrated into our daily lives, there is a growing need to facilitate human-robot
interaction, particularly in drone control. Drones have found numerous applications in various fields, such as
surveillance, package delivery, and agriculture, etc. However, their operation often requires technical
knowledge, making them less accessible to non-experts. Natural language-based interfaces present a
promising solution that could enable intuitive and accessible drone control. In response to this need, we have
developed a chatbot program that interfaces with a PX4/Gazebo [5] drone simulation, leveraging the OpenAI
API to generate responses to user queries and commands.

PX4/Gazebo is a popular open-source simulator for testing drone control algorithms and developing
autonomous drone applications. Integrating natural language control in the simulator can serve as the first
step to validate a more intuitive control method for drones. In this paper, we propose an approach to integrate
ChatGPT with PX4/Gazebo, enabling users to control the drone in the simulator using natural language
commands. By interfacing with this simulator, our program offers a realistic and safe environment for users
to practice and experiment with drone control. Additionally, the program has the ability to run XML code in
the PX4/Gazebo environment, allowing users to test and refine their own drone control algorithms.

+ Corresponding author. Tel.: +3265374068.
 E-mail address: mohamed.tazir@umons.ac.be.

ISBN: 978-981-18-7950-0

doi: 10.18178/wcse.2023.06.031

215

2. Related Works

In this section, we will discuss relevant literature on natural language-based control systems for robots,
large language models (LLMs) in robotics, and drone control using natural language.

2.1. Natural language-based control systems for robots
The development of natural language processing (NLP) techniques has opened up new possibilities for

human-robot interaction. One area of interest is the control of robots using natural language commands,
which can significantly improve the accessibility and ease of use of robotic systems. Tellex et al. [6]
proposed a system that translates natural language commands into robot control policies using a probabilistic
graphical model. They demonstrated the effectiveness of their approach in controlling a robotic forklift.

Guadarrama et al. [7] introduced a semantic parsing approach to understand natural language commands
and convert them into executable robot actions. It grounds the meaning of input sentences in terms of visual
percepts from the robot's sensors, enabling the robot to understand and execute complex commands
involving multiple objects and spatial relationships. This enables the PR2 robot to execute appropriate
commands or respond to spatial queries.

2.2. Large language models in robotics
With the advent of LLMs, such as GPT-3, the capabilities of NLP models have significantly improved,

allowing for more sophisticated natural language understanding and generation tasks. Researchers have
started exploring the use of these models in robotics applications.

The paper [8] investigates whether pre-trained LLMs can extract actionable knowledge for grounded
tasks in interactive environments. The authors demonstrate the feasibility of this approach by grounding
high-level tasks expressed in natural language to a chosen set of actionable steps.

Another study, [9] explores the use of LLMs trained on code-completion to write robot policy code given
natural language commands. This approach is demonstrated across multiple real robot platforms and
achieves state-of-the-art results on the HumanEval benchmark.

Singh et al. in [10] presents PROGPROMPT, a programming language structure that uses LLMs to
generate robot task plans. The authors demonstrate the success of this approach in VirtualHome household
tasks and on a physical robot arm for tabletop tasks.

The paper ”LATTE: LAnguage Trajectory TransformEr” [11] proposes a language-based framework for
modifying generic robotic trajectories using pre-trained language models. The authors show that this
approach can successfully follow human intent, modifying the shape and speed of trajectories within
multiple environments.

2.3. Drone Control using Natural Language
There have been several efforts to develop natural language interfaces for drone control. A recent paper

[12] explores the use of OpenAI’s ChatGPT for robotics applications, including drone control. The authors
propose a strategy that combines prompt engineering principles with a high-level function library, allowing
ChatGPT to adapt to different robotics tasks and simulators. They integrate ChatGPT with Microsoft AirSim
simulator [13] and demonstrate the effectiveness of this approach in executing various types of robotics tasks
[14], showing that ChatGPT can be effective while allowing users to interact with it through natural language.

Our work sets itself apart from existing literature by offering several distinct contributions:
1. Achieving a successful integration of OpenAI's ChatGPT API with the PX4/Gazebo platform.
2. Enabling drone control in natural language through the Pixhawk autopilot (commander).
3. Developing and implementing a verification and validation system for commands generated by

ChatGPT, ensuring the reliability and safety of the natural language-based control approach.
4. Identifying and outlining the most relevant criteria for crafting effective prompts that guarantee the

generation of zero-shot responses, providing valuable insights for future research and applications
involving human-robot interaction and large language models.

216

3. Methodology

In this section, we describe the proposed system's implementation, including the integration of ChatGPT
with PX4/Gazebo, the validation of generated commands, and the translation of these commands into
executable actions in the simulator.

3.1. Integration of ChatGPT with PX4/Gazebo
In this work, we have developed a system that enables users to control the drone through natural

language input. The input is processed by the ChatGPT API, which generates appropriate commands for
execution. The system employs the PX4 flight stack to manage drone control and perform various tasks.

The developed system establish a chatbot that interfaces with the PX4/Gazebo simulator, utilizing
OpenAI's GPT-3.5-Turbo model to respond to user queries and commands. The integration process involves
setting up a connection between the chatbot and the simulator. We develop a Python-based middleware to
create a communication channel that serves as an interface between ChatGPT and the PX4/Gazebo simulator.
This middleware processes the natural language inputs, forwards requests to ChatGPT, retrieves responses,
and generates commands for the simulator. Upon initialization, the middleware connects to the Gazebo
environment, facilitating communication with the simulated drone.

We structure the chatbot to operate in a loop where it waits for user input, sends the user's message and
chat history to the OpenAI API to generate a response, appends the response to the chat history, and prints it
to the console. This systematic approach ensures seamless interaction between the user and the drone
simulation, resulting in an efficient and user-friendly natural language-based drone control system.

3.2. Command Generation
The command generation process involves the use of user-provided prompts to guide ChatGPT in

generating more specific and relevant responses. The developed system requires two input files: one for the
temporary prompt, which is used to initialize the discussion, and the second for the permanent prompt, which
is injected throughout the discussion to control the generated responses.

The act of defining these two prompts is called "prompt engineering" and it is an area an active research
[15-16]. In the following, we will define the most relevant criteria for defining effective prompts that ensure
zero-shot response generation.

3.3. Defining the context
A well-defined context is essential for guiding ChatGPT to generate responses relevant to the problem

domain. The prompt should provide sufficient information about the domain, in this case, controlling drones
in the PX4/Gazebo simulator (Figure 1). By setting the context, ChatGPT can focus its responses accordingly
and maintain consistency with the target system.

Fig. 1: Defining the context for ChatGPT.

3.4. Defining the role of ChatGPT
Specifying the role of ChatGPT is crucial for shaping its behavior and the type of responses it generates.

Clearly state the role, describing the purpose and the support it should provide to the user. In the given
example, ChatGPT is assigned the role of an assistant, which helps the model understand that it is expected
to provide guidance and support in the form of PX4 commands and explanations (figure 2).

217

Fig. 2: Defining the role of ChatGPT.

3.5. Describing the environment
Providing information about the environment in which the task is being performed. This may include

details about the simulator, the physical world, or any specific conditions that are relevant to the task (figure
3). This helps ChatGPT generate more accurate and contextually appropriate responses or actions.

Fig. 3: Describing the environment.

3.2.4． Defining the allowed functions
To ensure that ChatGPT generates responses consistent with the given functionality and constraints, the

prompt should explicitly list the available functions and prohibit the use of any other functions (Figure 4).
This approach helps maintain compatibility with the target system and avoids generating unusable or
erroneous responses.

Fig. 4: Defining the allowed functions.

3.2.5. Defining the output format
Establishing the desired output format in the prompt is essential for maintaining consistency across

responses and ensuring compatibility with the target system. In the given example, the prompt specifies the

218

XML format for the generated responses, which allows the system to parse and process the responses as
required (figure 5).

Fig. 5: Defining the output format.

3.2.6. Defining constraints
Including any limitations or constraints that should be adhered to by ChatGPT, such as computing

checksums, character limits, or any other restrictions that apply to the task. In our case, the checksum
algorithm is provided for command validation and system reliability (figure 6). By defining such constraints,
the prompt guides ChatGPT to produce responses that are both accurate and usable in the target system.

Fig. 6: Defining constraints.

3.2.7. Handling ambiguity
Providing guidance on how the model should handle ambiguous queries or when it lacks sufficient

information to generate a confident response. This could involve asking clarifying questions or suggesting
alternative solutions (figure 7).

Fig. 7: Handling ambiguity.

3.2.8. Summarizing everything in an example
Providing a well-structured example in the prompt helps ChatGPT understand the desired output format

and the relationship between different components, such as command and checksum, in the response (figure
8). The example serves as a template for the model to follow, ensuring that generated responses align with
the established criteria and requirements of the target system.

Fig. 8: Summarizing everything in an example.

3.6. Command Validation
Validating the generated commands is crucial for ensuring the reliability and safety of the drone control

system. In this subsection, we detail the steps involved in the command validation process, which includes
checking the command's syntax, and calculating the command checksum.

219

3.6.1. Syntax Validation

The first step in the validation process is to examine the syntax of the generated command. This is
achieved by implementing a syntax parser that checks if the command adheres to the specified format, as per
the PX4/Gazebo simulator requirements. Any commands failing to meet these requirements are flagged as
invalid and not executed.
3.6.2. Checksum Calculation and Verification

To further enhance the reliability of the system, a checksum is calculated for each generated command.
The checksum algorithm is detailed in the prompt provided to ChatGPT and involves the following steps:

1. Encode the command as bytes using the UTF-8 encoding.
2. Sum the byte values of the encoded command.
3. Take the result modulo 256 to get the 8-bit checksum value.
4. Return the checksum value as a 2-digit hexadecimal string.

The calculated checksum is then compared with the checksum provided by ChatGPT in its response. If
the checksums match, the command is considered valid and proceeds to execution. If the checksums do not
match, the command is deemed invalid and not executed, prompting the user to either modify the input or
request a new command from ChatGPT.

Upon receiving a response from ChatGPT, the middleware validates the command. This algorithm
checks the consistency and accuracy of the generated command to ensure it adheres to the established
command structure and avoids potential errors. If the command passes the validation process, it proceeds to
the translation phase; otherwise, the middleware requests an alternative command from ChatGPT or alerts
the user.

3.7. Translation of Commands into Simulator Actions
Once a valid command is generated, the middleware translates the natural language command into an

executable action for the PX4/Gazebo simulator. This process involves mapping the command to a
corresponding MAVLink message that the simulator can interpret and execute. The middleware sends the
appropriate MAVLink messages corresponding to the received commands, allowing the drone to perform the
desired actions within the Gazebo environment.

By following these steps, we implement a natural language-based control system that seamlessly
integrates ChatGPT with the PX4/Gazebo simulator. This system allows users to control a drone in a
simulated environment using intuitive and accessible natural language commands.

4. Experiments
The system developed in this work provides an intuitive and user-friendly interface for drone control,

allowing users to control the drone using natural language inputs. The results of the discussion shown in
Figure 9 demonstrate the successful implementation of the natural language-based drone control system.

Fig. 9: Example of ChatGPT conversation and generated commands

220

The chatbot was able to understand and respond to user prompts accurately, allowing for seamless

control of the drone in the simulation environment. The system was tested on several tasks, including arming
and disarming the drone, changing the drone’s flight mode, and executing simple flight patterns, etc.

4.1. Command Generation Accuracy
To assess the command generation accuracy, we designed a set of test scenarios consisting of various

natural language inputs representing different drone actions. We then evaluated the generated commands
based on their correctness and compliance with the established command structure. To achieve a
comprehensive assessment, we requested ChatGPT to generate 30 distinct natural language models for each
of the primary commands, including arming, disarming, taking off, landing, and mode changes.

Table 1: Command Generation Accuracy Results
Test Scenario Number of Correct Commands Total Commands Accuracy (%)
Arming 28 30 93.3
Disarming 26 30 86.6
Take-off 30 30 100.0
Landing 27 30 90.0
Mode Changes 25 30 83.3
Total / Average 136 150 90.6

Table 1 shows the results of the command generation accuracy experiment. The table presents the

number of correct commands generated by ChatGPT and the corresponding accuracy for each test scenario.
The table shows that the overall command generation accuracy is 90.6%, indicating that ChatGPT can
effectively generate correct and valid commands for the PX4/Gazebo simulator based on natural language
input.

5. Conclusion
This paper has presented a novel approach to enabling natural language interaction between users and the

PX4/Gazebo drone simulator using OpenAI's ChatGPT. We have detailed the system architecture, the
command generation and validation processes, and the translation of commands into simulator actions.
Additionally, we have proposed a set of criteria for designing effective prompts to ensure zero-shot response
generation.

Through a series of experiments, we have demonstrated the efficacy of our approach in generating
accurate and relevant commands from natural language input. The results showcase the potential of
leveraging advanced language models like ChatGPT to facilitate intuitive and efficient interaction between
humans and robotic systems.

In future work, we aim to refine the prompt engineering process to improve response quality further and
extending the approach to other simulators or real-world robotic systems. Additionally, we plan to focus on
the development and utilization of our own methods for localization, trajectory planning, and obstacle
avoidance, rather than relying solely on the functions predefined in the PX4 commander. Overall, this
research contributes to the ongoing efforts to bridge the gap between human-robot communication and paves
the way for more accessible, user-friendly interfaces in robotics.

6. Acknowledgements
This work is funded by the EU and Walloon region (Belgium) as part of the ViewSkyModel project.

7. References
[1] BROWN, Tom, MANN, Benjamin, RYDER, Nick, et al. Language models are few-shot learners. Advances in

neural information processing systems, 2020, vol. 33, p. 1877-1901.

[2] OpenAI, GPT-4 Technical Report, arXiv preprint arXiv: 2303.08774, 2023.

[3] CHEN, Mark, TWOREK, Jerry, JUN, Heewoo, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

221

[4] OpenAI. ChatGPT, 2023. https://openai.com/blog/chatgpt/, Retrieved May 5, 2023.

[5] PX4 Autopilot Software. (n.d.). Software Overview. Retrieved may 5, 2023, from https://px4.io/software/
software-overview/.

[6] Tellex, S., Kollar, T., Dickerson, S., Walter, M. R., Banerjee, A. G., Teller, S., & Roy, N. Understanding Natural
Language Commands for Robotic Navigation and Mobile Manipulation. Proceedings of the National Conference
on Artificial Intelligence (AAAI), 2011.

[7] Guadarrama, S., Riano, L., Golland, D., Göhring, D., Jia, Y., Klein, D., Abbeel, P., & Darrell, T. Grounding
spatial relations for human-robot interaction. Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2013.

[8] Wenlong Huang, Pieter Abbeel, Deepak Pathak, Igor Mordatch. Language Models as Zero-Shot Planners:
Extracting Actionable Knowledge for Embodied Agents. In Proceedings of the International Conference on
Machine Learning (ICML), 2022.

[9] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, Andy Zeng. Code
as policies: Language model programs for embodied control, arXiv preprint arXiv:2209.07753, 2022.

[10] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse
Thomason, Animesh Garg. Progprompt: Generating situated robot task plans using large language models, arXiv
preprint arXiv:2209.11302, 2022.

[11] Arthur Bucker, Luis Figueredo, Sami Haddadin, Ashish Kapoor, Shuang Ma, Sai Vemprala, Rogerio Bonatti.
LaTTe: Language Trajectory TransformEr, arXiv preprint arXiv:2208.02918, 2022.

[12] Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. ChatGPT for Robotics: Design Principles and
Model Abilities. Microsoft, Tech. Rep. MSR-TR-2023, 2023.

[13] Shital Shah, Debadeepta Dey, Chris Lovett, Ashish Kapoor. Airsim: High-fidelity visual and physical simulation
for autonomous vehicles. In Proceedings of the Field and Service Robotics: Results of the 11th International
Conference, 2018.

[14] Matthew R Walter, Siddharth Patki, Andrea F Daniele, Ethan Fahnestock, Felix Duvallet, Sachithra Hemachandra,
Jean Oh, Anthony Stentz, Nicholas Roy, Thomas M Howard. Language understanding for field and service robots
in a priori unknown environments, arXiv preprint arXiv:2105.10396, 2021.

[15] KUCHNIK, Michael, SMITH, Virginia, et AMVROSIADIS, George. Validating Large Language Models with
ReLM. arXiv preprint arXiv:2211.15458, 2022.

[16] Gao, T., Fisch, A., and Chen, D. Making pre-trained language models better few-shot learners. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing, 2021, pp. 3816–3830.

222

	031

