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Abstract. Community structure is one of the universal topological attributes in complex networks. Finding 

community structure is the basic task of complex network analysis. Community detection is designed to 

divide the network into multiple substructures, which plays an important role in understanding the network 

and revealing the potential function of the network. As the amount of data increases, the network becomes 

more complex. In particular, nodes in a network may have multiple identities, such as node features and 

whether communities overlap. In recent years, many community detection methods based on deep learning 

have made great progress. However, the problem of these works is that the representation ability of models is 

limited. How to design an efficient and powerful representation model is very important. We have noticed 

that the hypergraph model can detect the higher-order relationship in the data. We use the powerful 

representation ability of the hypergraph convolutional network and apply it to the task of community 

detection, and finally realize our idea, and our method has achieved the best performance in the experiment. 

Keywords: Overlapping community detection, Hypergraph convolution neural networks. 

1. Introduction 

In recent years, graph convolutional neural network has become an important research direction in the 

field of artificial intelligence and big data due to its strong representation ability, good performance and 

interpretability. It has been widely used in recommender system, bioinformatics, social networks, computer 

vision, natural language processing and other fields, and it has achieved good results. A graph structure is a 

typical data structure [1-2], whose vertices represent nodes and edges represent the connections between 

nodes, while the hypergraph structure is used to build higher-order dependencies between data. 

The study of graph structure by neural network has attracted great attention of researchers. In [3] and [4], 

neural networks on graphs were first introduced to apply recurrent neural networks to graphs. To generalize 

convolutional networks to graphs, the method is divided into spectral and non-spectral methods. For spectral 

methods, the convolution operation is represented in the spectral domain of the graph. [5] introduced the first 

graph CNN, which used graphic Laplace basis as an analogy to the Fourier transform. In [6], spectral filters 

can be parameterized using smoothing coefficients to be spatially localized. In [7], spectral filters are further 

approximated using the Chebyshev expansion of the graph Laplacian. Then, in [8], the Chebyshev 

polynomials are reduced to first-order polynomials to form an efficient hierarchical propagation model. For 

spatial methods, the convolution operation is defined in the spatial closure node group. In [9], the power of 

the transition matrix is used to define the neighborhood of nodes. [10] generalize convolution in the spatial 

domain using a local path operator in the form of a Gaussian mixture model. In [11], attention mechanisms 

are introduced into graphs to build attention-based architectures to perform node classification tasks on 

graphs. [12] proposed a learnable Hypergraph Laplacians module for updating the hypergraph topology 

during training. 

The hypergraph structure is used to build higher-order dependencies between data. Hypergraph learning 

was first proposed in [13] as a propagation process over hypergraph structures. Transductive reasoning on 
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hypergraphs aims to minimize the difference between tones with strong connections on hypergraphs. In [14], 

hypergraph learning is further applied to video object segmentation. [15] used a hypergraph structure to 

model image relationships and perform inductive reasoning on image ranking. To further improve the 

structure of hypergraphs, the learning of hyperedge weights has attracted attention, which has a great impact 

on data correlation modeling. 

There are also some other ways to create a hypergraph from a given graph, such as Normalized cut, etc. 

But, as we do not want to create an accurate hypergraph and obviously this means of producing is NP-Hard, 

we ignore to describe them more. By using HGCN as a bridge to the family of graph neural networks, it is 

possible to establish linkages with other frameworks, such as MoNet [16], and develop higher-order 

counterparts of these variants to handle non-pairwise relations. 

Our work is to design a novel Hypergraph Convolution Networks for overlapping community detection. 

The main contributions of our work are as follows: 

•  First to apply hypergraph neural networks to task of overlapping community detection. 

• Conduct a comprehensive evaluation of our model and show that it outperforms existing overlapping 

community detection methods. 

2. Related Works 

2.1. Hypergraph Convolutional Neural Networks 

In recent years, graph-based convolutional neural networks have attracted a lot of attention, first 

proposed by [17]. Some classical methods [8] [18] [19] are specialized neural network structures that can 

operate on the structure of graphs. A graph neural network is a method for learning deep models or 

embedding graph-structured data. The goal of embedding methods [20-23], is to learn vector 

representations of nodes in the graph, which are then used for downstream tasks. The biggest advantage of 

the graph convolutional neural network over the traditional neural network is that it can use the neural 

network model to encode the graph structure of different input data. Graph convolutional neural networks 

have shown great advantages in representation learning due to their ability to exploit graph structures. 

The traditional graph convolutional neural network approach relies on pairwise relationships between 

data, which means that each edge on the graph can only link two vertices. However, in many practical 

application scenarios, the structure of the data may be beyond the existence of pairwise relationships. For 

example, suppose that the edge represents the article, and the point is the author of the article. In a simple 

graph, one author can only connect to one article, thus easily losing multiple authors of the same article. 

Because a simple graph can only be two nodes and one line, and an article can only have two authors; but for 

a hypergraph, more than two nodes can be connected on an edge. The paired relationship has been unable to 

meet our actual needs very well. But hypergraphs can satisfy such a requirement. At this stage, hypergraph 

convolutional neural networks have become a new research direction. 

2.2. Community Detection 

Community structure is one of the ubiquitous topological properties in complex networks and finding 

community structure is the basic task of complex network analysis. Community detection aims to divide the 

network into multiple subgraphs, and it also plays an important role in understanding the network and 

revealing the potential functions of the network. A graph neural network is a powerful model for processing 

graph-structured data, which can extract and represent features from the graph structure. Network data can be 

regarded as graph data, so the use of graph neural network model to solve the task of community detection is 

a new research direction of community detection. Community-level descriptions are able to capture 

important information about the global structure of the graph. Such descriptions are useful in many 

practical applications, such as identifying users with similar interests in social networks [24] or proteins 

with similar functions in biochemical networks [25]. 
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2.3. Community Detection Based on Deep Learning 

At present, many deep learning methods have been well applied in community detection, and the 

problem of community detection on graphs has been fully confirmed in the research literature. We note that 

most of the current deep learning-based work is Tasks based on link prediction and node classification have 

not received enough attention in the unsupervised community detection task. Some methods [26-28] have 

been developed based on this, but these works are cantered on non-overlapping Community detection is 

carried out, however the real communities are often mostly overlapping communities. Overlapping 

community detection algorithms can be roughly classified into non-negative matrix factorization [29-31] 

probabilistic inference [32-35], and heuristic methods [36-39]. Deep learning for graphs can be broadly 

classified into two categories: graph neural networks and node embedding. 

GNNs [8] [10] [40] is a specialized neural network that can operate on graph-structured data, and the 

goal of embedding approaches is to learn vector representations of nodes in a graph for the downstream 

tasks. Although the embedding method can detect the disjoint community structure well, it is no longer 

suitable for the detection of overlapping communities, which is also proved by our experiments.  

Our work is to design an overlapping community detection model based on hypergraph convolutional 

neural networks, and we note that our work is the first to apply hypergraph neural networks to task of 

overlapping community detection. 

3. Methodology 

Here, we introduce our model for overlapping community detection based on hypergraph neural 

network convolutions (HOCD). Its core idea is to combine the powerful representation ability of hypergraph 

convolutional neural network with overlapping community detection based on Bernoulli-Poisson probability 

distribution. 

3.1. Definitions 

Most of the existing work operates on graphs of pairwise relations. The definition of a simple graph is 

  (   ) , where   *            +  represents the set of vertices of the graph, and the edge set is 

represented as      . The adjacency matrix         of a graph is expressed as a pairwise. In a 

simple graph, each edge can only connect two vertices. But in many practical applications, the 

relationship between vertices is a complex unpaired relationship. To represent this unpaired 

relationship, we refer to a practical graph structure - the hypergraph structure. In a hypergraph, an edge 

can connect more than two vertices. We set   (   ) to be a hypergraph with   vertices and   

hyperedges, each hyperedge     is assigned in a positive weight   , and all positive weights are 

stored in a diagonal matrix. Except for simple graphs that define adjacency matrices, hypergraph can 

be represented by an incidence matrix       , then incidence matrix   can be defined as: 

     {
                               
                             

         (1) 

3.2. Hypergraph Convolutional Network 

In fact, the hypergraph convolutional neural network is a special case of the graph convolutional neural 

network, and we will demonstrate this process later. The main obstacle to defining convolution operators in 

hypergraphs is the transition probability between two vertices, which can be used to propagate the 

embedding (or feature) of each vertex in a graph neural network. To achieve this, we hold two assumptions: 

(1) There should be more propagation between those vertices linked by common hyperedges. (2) Hyperedges 

with larger weights should have larger confidence in propagation. Then the process can be defined as: 

  
(   )

  .∑ ∑            
( )
  

   
 
   /              (2) 

where   
( )

 is the embedding of the of the  -th layer,   ( ) is a non-linear activation function like ReLU, and 

  is the trainable weight matrix in the l-th layer convolution. Considering the scale change of   
( )

, Thus, we 

impose a symmetric normalization and arrive at our final formulation: 

 (   )   (                  ( ) )         (3) 
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here, we recall that   and   are the degree matrices of the vertex and hyperedge in a hypergraph, 

respectively. 

3.3. Overlapping Community Detection 

The purpose of overlapping community detection is to assign nodes to   communities. This assignment 

can be represented as a non-negative community attribute matrix This assignment can be represented as a 

non-negative community attribute matrix      
   , where     represents the strength of node   s 

membership in community  . There may be cases where a node is not assigned to any community, and there 

may be cases where a node belongs to multiple communities. This is the reason why the overlapping 

community is complicated. Although the community is very intuitive to us, it is difficult to find a unified 

identity of the community. We usually think that the community is a set of nodes, which is related to other 

nodes in the same group, this group of nodes is more likely to be assigned to the same community, in other 

words, the probability that the nodes in the group are paired will be greater. Intuitively, we can use the 

framework of probabilistic inference to solve the problem of overlapping community detection, which can be 

attributed to inferring the unobserved attribute matrix from the observed graph structure. Once we posit a 

community-based generative model  (    )  for the hypergraph, detecting communities boils down to 

inferring the unobserved affiliation matrix    given the observed hypergraph  .  

Besides the traditional probabilistic view, one can also view community detection through the lens of 

representation learning. The community affiliation matrix   can be considered as an embedding of nodes 

into    
 , with the aim of preserving the graph structure. Given the recent success of representation learning 

for graphs [41], a question arises: "Can the advances in deep learning for graphs be used to design better 

community detection algorithms?". We proved that simply combining existing node embedding approaches 

with overlapping K-means does not lead to satisfactory results. Instead, we propose to combine the 

probabilistic and representation learning, and learn the community affiliations in an end-to-end manner using 

GNN. We used the two-layer hypergraph convolutional neural network [42] as the basis of our model. The 

HGCN is defined as： 

       (   )      ( ̂    ( ̂  
( )) ( ))    (4) 

We have tested that only use a single HGCN model in our experiments, but simply use one of the 

branch cannot extract the complete information of the given data. And, some deeper model has been 

considered in our work, but none of them led to any noticeable improvements. In addition, we also 

considered Jumping Knowledge Network [8] and GarphSage [40] architectures, but they did not perform 

well enough on some datasets, so we did not adopt these solutions in the end. 

3.4. Bernoulli-Poisson Model 

The Bernoulli-Poisson (BP) model [34] [39] [43] is a graph generative model that allows for overlapping 

communities. According to the BP model, the graph is generated as follows. Given the affiliations      
   , 

adjacency matrix entries     are sampled i.i.d. as  

               (   (     (     
 ))     (5) 

where    is the row vector of community affiliations of the node   (the  's row of the matrix  ). Intuitively, 

the more communities’ nodes   and   have in common, the more likely they are to be a connected by an 

edge. 

Instead of treating the affiliation matrix   as a free variable over which optimization is performed, we 

generate   with a HGCN:  

       (    )          (6) 

A ReLU non-linearity is applied element-wise to the output layer to ensure non-negativity of  . 

The negative log-likelihood of the Bernoulli-Poisson model is: 

     ( ∣  )   ∑  (   )     (     (     
 )  ∑  (   )      

          (7) 
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Real-world graphs are usually extremely sparse, which means that the second term in Eq. (7) will 
provide a much larger contribution to the loss. We counteract this by balancing the two terms, which is a 
standard technique in imbalanced classification [44]. 

 ( )    (   )   ,   (     (    
 )-   (   )   ,    

 -       (8) 

where    and    denote uniform distributions over edges and non-edges respectively. 

Instead of directly optimizing the affiliation matrix  , as done by traditional approaches [34] [45], we 

search for neural network parameters    that minimize the (balanced) negative log-likelihood: 

           (     (   ))         (9) 

Using a HGCN for community prediction has several advantages. First, due to an appropriate inductive 

bias, the HGCN gives similar community affiliation vectors for neighbouring nodes, which greatly improves 

the quality of predictions compared to simpler models. Also, the above formulas can well integrate the node 

features into the model. Finally, with the formulation from Eq. (6), we can also predict the community of 

nodes that were not seen during training step. Fig.1 shows the overview of our HOCD model. 

 

Fig.1: The overview of HOCD model. 

4. Experiments 

In this section, we will evaluate the performance of our model on a few datasets, we use six social 
network datasets for a fair comparison with the previous method i.e., GCN. 

4.1. Datasets 
We use the following datasets, the Facebook dataset is a small collection of ego-networks from the 

Facebook graph, and the community structures within these datasets are overlapping communities. Larger 
graph datasets (10K+ nodes) with reliable ground-truth overlapping community information and node 
attributes are not openly available, which hampers the evaluation and development of new methods. The 
parameters of some datasets are shown in Table 1. 

Table 1: Overview of the datasets (K stands for 1000) 

Datasets Network type N M D C 

Facebook 348 Social 224 46 21 14 

Facebook 414 Social 150 1.7K 16 7 

Facebook 686 Social 168 1.6K 9 14 

Facebook 698 Social 61 270 6 13 

Facebook 1684 Social 786 14.0K 15 17 

Facebook 1912 Social 747 30.0K 29 46 
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4.2. Recovery of Ground-truth 

We evaluate our model by examining the results of our method in comparison with ground-truth. We 

choose three overlapping community detection methods based on different paradigms: probabilistic inference, 

non-negative matrix factorization (NMF), and deep learning methods.  

Among the methods given, BigCLAM [34], EMP [35], and SnetOC [33] are based on Bernoulli-Poisson 

distribution models, CESNA is an extension of BigCLAM, and CESNA additionally models node attributes. 

SNMF and CDE are non-negative matrix factorization (NMF) methods for overlapping community detection. 

Previous work also implemented two neural graph embedding-based methods, DeepWalk and Graph2Gauss, 

to compute node embedding for all nodes in each graph. Graph2Gauss considers both node features and 

graph structure, while DeepWalk only considers node features. These two methods use non-exhaustive 

overlapping (NEO) k-means to cluster nodes. Previous work expressed the methods of DeepWalk and 

Graph2Gauss as DW/NEO and G2G/NEO. 

To compare the detected communities with the ground truth, we first need to convert the predicted 

continuous community affiliations   into binary community assignments. We assign node   to community   

if its affiliation strength     is above a fixed threshold  , If the membership of the node   to the community 

c is greater than the threshold   we set, we will assign the node   to the   community. For different datasets, 

we dynamically adjust the threshold   to get the result, and then use it in further experiments without 

additional tuning. We found that popular metrics for quantifying agreement between true and detected 

communities, such as Jaccard and F1-scores [30] [35] [45] can give arbitrarily high scores for completely 

uninformative community assignments. Instead, we use overlapping normalized mutual information (NMI) 

[39], as it is more robust and meaningful. Table 2 shows the recovery of the ground-truth community of each 

method. 

Table 2: Recovery of ground-truth community, measured by NMI (in %). 

Dataset BigCLAM CESNA EPM SNetOC CDE SNMF DW/NEO G2G/NEO NOCD HOCD 

Facebook 348 26.0 29.4 6.5 24.0 24.8 13.5 31.2 17.2 36.4 44.4 

Facebook 414 48.3 50.3 17.5 52.0 28.7 32.5 40.9 32.3 59.8 59.7 

Facebook 686 13.8 13.3 3.1 10.6 13.5 11.6 11.8 5.6 21.0 25.4 

Facebook 698 45.6 39.4 9.2 44.9 31.6 28.0 40.1 2.6 41.7 51.0 

Facebook 1684 32.7 28.0 6.8 26.1 28.8 13.0 37.2 9.9 26.1 49.3 

Facebook 1912 21.4 21.2 9.8 21.4 15.5 23.4 20.8 16.0 35.6 41.4 

4.3. Ablation Study 

Our model achieved superior performance in community recovery. Intuitively, it makes sense to use a 

HOCD for the reason laid out in the previous section. However, we wonder that whether it is possible to 

achieve comparable result with other models. To resolve this problem, we considered the following two 

baselines. Table 3 shows the comparison of our model with other methods in community recovery. i.e., 

single feature-based HGCN or graph-based HGCN method, GNN-based approach, Multi-layer perception 

(MLP) and even simpler model Free Variable (FV). 

Table 3: The comparison of HGCN-based method with other baselines in community recovery. 

Datasets HOCD(OURS) MLP GNN Free variable 

Facebook 348 44.4 ± 1.8 36.4 ± 2.0 11.7 ± 2.7 25.7 ± 1.3 

Facebook 414 59.7 ± 0.9 59.8 ± 1.8 22.1 ± 3.1 49.2 ± 0.4 

Facebook 686 25.4 ± 1.2 21.0 ± 0.9 1.5 ± 0.7 13.5 ± 0.9 

Facebook 698 51.0 ± 1.0 41.7 ± 3.6 1.4 ± 13 41.5 ± 1.5 

Facebook 1684 49.3 ± 0.8 26.1 ± 13 17.1 ± 2.0 22.3 ± 1.4 

Facebook 1912 41.4 ± 0.2 35.6 ± 1.3 17.5 ± 19 18.3 ± 1.2 

For both the HGCN-based model and GNN-based model, we use a 2-layer hypergraph and graph 

convolutional neural network with hidden size of 128 and the output (second) layer of size   (number of 

communities to detect). We apply batch normalization after the first graph convolution layer. Dropout with 

50% keep probability is applied before every layer. We add weight decay to both weight matrices with 

regularization strength       . The feature matrix   (or  , in case we are working without attribute) is 

normalized such that every row has unit   -norm. For MLP-based model. We found the MLP model to 

perform best with the same configuration as described above for the GCN model (i.e., same regularization 
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strength, hidden size, dropout, and batch norm). For Free Variable model, we considered two initialization 

strategies for the free variable model: (1) Locally minimal neighbourhoods (the strategy used by the 

BigCLAM and CESNA models.) (2) Initializing   to the output of an untrained GCN. 

We found the first strategy to consistently provide better results. As for the training step for HGNN-

bases model, GNN-based model, and MLP-based model, we train both models using Adam optimizer [46] 

with default parameters. The learning rate is set to     . We use the following early stopping strategy: Every 

50 epochs we compute the full training loss. We stop optimization if there was no improvement in the loss 

for the last 10 × 50 = 500 iterations, or after 5000 epochs, whichever happens first. For free variable model, 

we use Adam optimizer with learning rate 5 ·     . After every gradient step, we project the   matrix to 

ensure that it stays non-negative        *     +. We use the same early stopping strategy as for the 

GNN and MLP models. 

4.4. Hyperparameter Sensitivity Analysis 

There is an important hyperparameter to evaluate the results. Fig.2 shows the performance of NMI on 

different datasets using different thresholds. When the threshold is set to 0.5, we can see three out of six 

datasets achieve the best results. It is generally in line with a trend of first increase and then decrease. For 

facebook 348 dataset, facebook 686 dataset and facebook 698 dataset, the performance reaches the best when 

the threshold is set to 0.3, 0.1 and 0.6 respectively. When the threshold is set to 1, the performance of all 

datasets is in the lowest level. This is not an unexplainable phenomenon, because it is very difficult for us to 

make our predicted probability reach to 1. 

 

Fig. 2: The performance of NMI on different datasets using different thresholds. 

5. Conclusion 

We propose an accurate, flexible and scalable model HOCD, a graph neural network model for 

overlapping community detection. Experimental results show that the model is efficient. In addition to strong 

empirical results, our work raises interesting follow-up questions. We will continue the study of hypergraph 

convolution in overlapping community detection later. There are other variants in the graph convolutional 

neural network family. We are going to add graph attention network (GAT) to hypergraph convolution in the 

neural network, rather than adding to the hypergraph convolutional neural network, in other words, the 

hypergraph convolutional neural network has an innate attention mechanism [12]. In the hypergraph 

convolution, for a given vertex, the incoming and the outgoing information streams are all assigned different 

importance, and the goal of hypergraph attention is to learn a dynamic association matrix. Thus, a dynamic 

transition matrix between vertices can be better revealed. To summarize, the results obtained in this paper 

provide strong evidence that deep learning for graphs deserves more attention as a framework for 

overlapping community detection. 
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