
2023 the 13th International Workshop on Computer Science and Engineering (WCSE 2023)

T-SSD: A Transformer-based Single-Stage Multi-Scale Sampling
Object Detector

Kailai Huang+, Mi Wen, Chen Wang, Lina Ling

College of Computer Science and Technology, Shanghai University of Electric Power, China

Abstract. The object detection algorithms are the cornerstones of autonomous driving systems, they are
mostly based on convolutional neural networks (CNNs) with one or two stages. Since its strong correlation
with the life safety of the driver, the accuracy of object detectors is crucial and limited by its foundation,
CNN, which is hard to improve nowadays. But at the same time, the basic transformer shows its better
performance compared with the advanced CNN. To improve the accuracy, using transformers seems to be a
better choice. However, most transformer-based detectors are only backbone replacements, ViT concept
extension, or a fusion with CNN, cannot give a full play to the performance referring to the characteristics of
the transformer. We proposed a single-stage object detector T-SSD (Transformer-based Single-Stage
Detector) that comes with a multi-scale feature modeling ability. The transformer backbone extracts feature
in different scales and aggregates them into an intermediate representation. The transformer neck then
directly queries the semantic information from the aggregated representation and feed them to heads to make
prediction once and for all. After training on COCO2017, by combining the construction philosophy of the
object detector and the characteristics of transformers, our T-SSD-Tiny gives an AP (Average Precision) up
to 9.0 higher than the CNN-based detectors with 100 fewer epochs, better than YOLOv3-Base and SSD-300.
Also, the AP given by our T-SSD-Small is up to 4.7 higher than the transformer-based detector with the same
epoch, indicating a comparable performance with DETR-ResNet-101 and YOLOS-Small.

Keywords: Transformer, Vision Transformer, Object Detection, One-Stage Algorithm.

1. Introduction
Object detectors are generally composed by three components: backbone, neck, and heads. The

backbone is the foundation of the overall architecture, it extracts features whereas the neck is normally an
optional module to perform further operations.

Fig. 1: The attention of T-SSD on an image of COCO2017 dataset. The area under the white halo is exactly the area the

model pays more attention to.

Backbones are often high-performance CNN-based image classifiers during the last decade, but
transformers [1,2] based on multi-head attention mechanisms have progressively arisen now, showing its
stronger generalization ability compared with the most used CNN while transferring from language modeling
to vision tasks. Various basic transformers [3,4] have outperformed widely adopted CNNs [5,6]. Providing
us better backbone choices, building a transformer-based object detector has become a new trendy task.

Traditional CNN-based object detectors include two categories: one-stage and two-stage, with the
migration to transformer architecture, some detectors have followed the lead of these design philosophies.

+ Corresponding author. Tel.: +86-16628586267; fax: +86-16628586267.
 E-mail address: yyyyyoc@hotmail.com.

ISBN: 978-981-18-7950-0

doi: 10.18178/wcse.2023.06.022

156

By using a transformer as the backbone substitution of a two-stage detector, a transformer-based detector can
be obtained [7], it not only inherits the drawbacks of its father but also bears the constraints of its own
shortcomings. Also, there are other models applying the vanilla transformer as a one-stage transformer-based
detector [8], it suffers the unfortunate consequence of being difficult to train which is brought by the
simplicity of its own structure and needs a lot of fancy training strategies to achieve the goal of single-stage
detection. Moreover, some models hybrid the CNN feature extractor with a prediction querying transformer
[9]. Even though CNN has an innate advantage in processing 3D image data, the transformer is designed to
process 2D sequence data. In such a mixed structure, the inductive bias definitely suffers a hurting loss
during the transforming action. So, we can draw a conclusion that these transformer-based object detection
models just mentioned still got defects that can be improved or avoided, some even cannot be called
transformer-based strictly.

To solve and avoid these annoying problems, we proposed T-SSD, whose name pays tribute to SSD [10],
without borrowing any help from CNN, fully built by transformer. It comes with multi-scale sampling ability
plus a feature aggregation strategy, and directly queries a certain number of boxes and classes from the
aggregated representation, which makes it a single-stage object detector. T-SSD mainly consists of three
parts: a transformer backbone with multi-scale sampling and modeling capabilities, a transformer neck that
can query results directly from intermediate representation, and a set of MLP predictors that give us the final
prediction.

Our main contributions can be summarized as follows:
• T-SSD was purely made by transformer with the one-stage operation, its backbone and neck are both

transformer, while the backbone aggregates multi-scaled representations in the process of sampling
and the neck makes queries once and for all. The whole process is conducted by attention operations
from the beginning to the end to avoid the problems caused by model fusion to give a full play to the
performance of the transformer.

• With the aggregated representations given by the process of sampling from backbone, the neck makes
queries once and for all. The whole process is conducted by attention operations from the beginning
to the end, this pure transformer was designed to avoid the problems caused by model fusion to give a
full play to the performance of the transformer.

• Whether under fewer epochs or the same training settings, T-SSD has a higher AP than CNN-based
or transformer-based detectors respectively. Not only this, the training strategy is clear and intuitive
compared with the sophisticated distilled training method.

2. The Proposed T-SSD Method
The overall architecture of our proposed T-SSD pipeline is illustrated in Fig.2. Following the designing

philosophy of classical object detectors, our proposed model also contains three major components: 1) a
transformer-based backbone with multi-scale sampling ability, see Sec.2.1, 2) a transformer-based object
query neck, see Sec.2.2 and 3) a box prediction head and a class prediction head, see Sec.2.3.

Fig. 2: Overall architecture of T-SSD.

157

2.1. Backbone: Feature Extraction

Our feature extracting backbone consists of a patch projection layer, a stack of SwinBlocks, and scale
controllings: AvgPool layer and Scaling layer. For illustrations, see the feature extraction module in Fig.2.

The input image is (3 because they are RGB images), before goes to the SwinBlocks,
needs to be split into non-overlapping and same-sized mini-patches and project them from 3-dimensional
patch tokens into 2-dimensional embeddings like ViT does. These patches are reshaped to
(4×4×3=48) and concatenate to a 2-dimensional sequence with sequence length of . Then
a projection layer projects the sequence from 48 to an arbitrary dimension C, resulting in

.
During the process of the following stages of shift-windowed operation blocks, each stage of them will

give us an intermediate output in different shapes. Inspired by SSD, we want to make the maximum
utilization of these 4 different scaled intermediate outputs in Eqs.(1):

 (1)

For dimensional considerations, the following module requires (and D are hyperparameters,
the former is the scale of your embedding scale, the latter is the dimension that the detecting transformer
neck expects). In the consideration of concatenation, these 4 embeddings must be fixed to a unified channel
dimension.

Meanwhile, the length of these 4 features embedding sequences needs to be condensed: before unified-
scaling, the feature sequence is first reshaped from a 2-dimensional sequence to a 3-dimensional feature map
in a squared shape, avgpool then shrinks the 3-dimensional feature into a fixed smaller edge size E in the
condition of . In this case, the output size of feature extraction is . Process illustration
equations see Eq.(2).

 (2)

2.2. Neck: Object Query
The step of feature extraction gives us an aggregated patch embedding . Now, we have to think

about how to predict the boxes and classes from it. Since we are designing a single-stage detector and not
using default boxes or anchor boxes. Directly querying all of the boxes and classes from the feature sequence
seems to be a perfect solution for us. The equation of the standard self-attention mechanism is illustrated in
Eq.(3).

 (3)

Where Q, K, and V are model parameters which have the same shape as their input, and is the
dimension of Q and K. Considering the expressive ability of T-SSD, we use multi-head self-attention, which
can be seen in Eq.(4), where k is the number of heads.

 (4)
Therefore, for one layer of encoder, see Eq.(5), note that there are layer normalizations before each

suboperations in the equation.

x

48

0 / 4 / 4L H W= ´

5L

2
5 4L E= ´

1 4

Linear(AvgPool ()), 1...4
[; ;].

i i pi i= =

= …
0

0 0 0

z x
z z z

Attention(, ,) softmax
T

k

QKQ K V V
d

æ ö
= ç ÷ç ÷

è ø

kd

[]1MultiHead() Attention (); ;Attention ()kz z=z 

158

 (5)

In BERT and ViT, the projected patch embedding is concatenated with a learnable class embedding
, it is used for making attention to the patch embedding and understand the class of the image. In

our proposed method, we follow this instinct and use a number of detection tokens to fulfil the goal of
querying N objects (N is also the number of detection tokens) from . At this point, the patch embedding is
concatenated with , then a same-sized positional embedding is added to the former
embedding, thus, the general integral embedding . Operation logic see Eq.(6).

 (6)

Since we want to query the embedding which concatenated with , here, for detecting query purpose,
we use stacked layers of transformer encoder, eventually, output the solely. Notice that, the dimension
of the embedding do not change. The processing logic illustrated in Eq.(7).

 (7)

2.3. Heads: Final Prediction
The neck of T-SSD only output the detection tokens , the job of heads is to predict the coordinates

of the bounding-boxes and the classes of the objects eventually. So, in the end of the whole procedure, lies
two heads: a box head and a class head. They are made of MLPs (Multi-Layer Perceptron, stacking of linear
layers), heads can be seen in Eq.(8).

 (8)

The heads are giving us the prediction of all objects at the same time, predicted boxes and
. Finally, the prediction of T-SSD, , is shown in Eq.(9).

 (9)
By assembling these 3 main components together, we will get the T-SSD model that predict a set of

bounding-boxes and category classes with number of N in a single query operation.

3. Result Analysis

Fig. 3: The boxes, classes and attention map resulting on image. The attention map is the accumulation of the

activations of intermediate output from backbone.

By assembling these 3 main components together, we will get the T-SSD model that predict a set of
bounding-boxes and category classes with number of N in a single query operation.

3.1. Dataset
We trained T-SSD on COCO 2017 [11] dataset. The quantity of training set and validation set contains

118287 and 5000 RGB images separately. COCO 2017 contains different types of annotation for different

MultiHead(()),
MLP(()).

LN
LN

¢ =
¢=

0z z
z z

5px

[;],
.

¢ =
= +

1 0

1 1

z z det
z z PE

[]det
[]det

5 5

[Encoder(Encoder((Encoder())))],
[; ;].L L N+

¢ = …

¢ ¢= …
2 1

2 2 2

z z
z z z

[]det

ˆ MLP(),
ˆ MLP().
box

cls

y
y

=
=

2

2

z
z

ŷ
ˆ ˆ ˆ[;]box clsy y=y

159

tasks, for instance: object detection, panoptic segmentation, keypoint caption and etc., we choose the
annotations for object instances detection. Each image has an average of 7 instances, in the training set, there
are up to 63 instances in a single image, from small to large. The AP in tablecnn and tabletrans are bounding
box AP, it’s the accumulation of GIoU [12] threshold from 0.5 to 0.95 at every object scale.

3.2. Model setup
Table 1: Parameter composition

Model Name Input Size Backbone Neck
Heads

Total
Layers Params

T-SSD-Tiny 672 27.4M 5.7G 3 0.1M 33.2M(33,206,688)
T-SSD-Small 672 48.8M 22.0G 3 0.6M 71.4M(71,379,648)

As we illustrated in the above chapters, T-SSD mainly contains 3 parts of components: 1) backbone, for
feature extraction, 2) neck, for bounding box regression, and 3) heads, for box and class prediction.
Parameter composition see Table 1, the choice of our backbone is SwinTransformer, instead of migrating it
intact, we only use a specific stack of SwinBlocks. The neck consists of classic transformer encoders,
structurally, it is similar to DeiT, since we use a number of detection tokens, it is now more like YOLOS,
and still, it is not a migrate of intact. So, if you are interested in it, you will find the parameter of our
backbone and neck is less than the equivalent SwinTransformer and YOLOS.

Table 2: Pooling configurations

Model Name Input Size
AvgPool

Output Size Total Patches
Filter Size Stride

T-SSD-Tiny

84 7 6 13

728
42 5 3 13
21 9 1 13
21 9 1 13

T-SSD-Small

84 10 5 15

900
42 13 2 15
21 7 1 15
21 7 1 15

As mentioned above, the aggregation of intermediate outputs is an important step in our model. Table 2
listed the hyperparameters of the average pooling, they are designed to shrunk the length of the embedding to
save the computational cost.

3.3. Training details
The bipartite matching loss from [9] is used as the criterion measurement of T-SSD. For optimization,

we use AdamW [13] and set the learning rate and weight decay to with cosine learning rate decay.
The trends of loss and AP can be seen in Fig.4. All of the parameters are initialized with truncated normal
distribution. For both train and validation images, we convert them uniformly to the size of 672×672×3
which were normalized after to match the input requirements of SwinBlocks and raise the performance,
meanwhile, a horizontal flip was used as the augmentation.

41 10-´

160

Fig. 4: The AP and Loss variation curve of T-SSD-Tiny and T-SSD-Small.

In order to accelerate the speed of model convergence and curve fitting, we used some pre-trained
weights. Thanks to the awesome work of SwinTransformer and YOLOS, we can use their pre-trained
weights. A number of weights of layers in SwinTransformer can be used as the initial weights of a part of
weights of our backbone. As for some weights of detection tokens from YOLOS can save both some time
and some labour.

The whole training and evaluation process of these various models were performed on a single node,
with a machine containing 4 NVIDIA A40 GPU. The whole training time of tiny model with batch size of 31
and 200 epochs is about 60 hours, and about 96 hours for small model with 16 batch size and 200 epochs.

3.4. Comparisions with CNN-based object detectors
Table 3: Comparisions with some classical CNN-based detectors

Model Name Input Size Epoch Parameters FLOPs AP

YOLOv3-Tiny 640 300 8.9M 14.6G 18.1
YOLOv3-Base 640 300 61.9M 162.3G 23.3

SSD-300 300 300 22.9M 197.8G 24.6
T-SSD-Tiny 672 200 33.2M 86.7G 27.1

We choose 3 CNN-based detectors to compare with: YOLOv3-Tiny, YOLOv3-Base and SSD-300. The
setups and results can be seen in Table 3. The implementations and training method of YOLOv3s are from
Ultralytics, and SSD-300's are from NVIDIA. After 300 epochs of train with an input size of 640×640,
YOLOv3-Tiny and YOLOv3-Base achieved an AP of 18.1 and 23.3, which have a gap of 10.0 and 3.8
compared with the 27.1 AP of T-SSD-Tiny. The AP of T-SSD-Tiny is also 2.5 higher than SSD-300 with
300 epochs of training and an input size of 300×300. Among these classical CNN-based object detectors,
our T-SSD-Tiny has the best result of 27.1AP, higher than any of them, at the same time, 100 less epochs
with a decent quantity of parameter and FLOPs.

3.5. Comparisions with transformer-based object detectors
By assembling these 3 main components together, we will get

Table 4: Comparisions with some transformer-based detectors

Model Name Input Size Epoch Parameters FLOPs AP

YOLOS-Tiny 672 300 6.5M 20.4G 21.8
YOLOS-Small 672 200 27.6M 80.4G 27.3

DETR-R34 672 200 38.7M 73.0G 24.3
DETR-R101 672 200 60.2M 147.8G 28.4
T-SSD-Small 672 200 71.4M 196.1G 32.0

Compared with 4 transformer-based detectors, the input size are all fixed to 672×672, total epochs are
200 except YOLOS-Tiny, which have 300 epochs. Our T-SSD-Small also gained the highest 32.0 AP, 10.2
and 4.7 higher compared with YOLOS-Tiny and YOLOS-Small, and, compared with DETR-ResNet-34 and

161

DETR-ResNet-101, which 7.7 and 3.6 higher. However, its shortcomings are the larger parameter quantity
and higher FLOPs. The implementations and training methods are strictly followed by the official code, but
with a very mild change of input image size and augmentations to be on the same starting line with our T-
SSD-Small. For statistical details, see Table 4.

3.6. Visualizations
Fig.3. shows 4 groups of image, for each group, there is an original input image, a predicted image, and

an attention masked image. As we can see in Fig.1 and Fig.3, the predicted boxes and attention are majorly
in the overlapping area of the image, and these areas are basically the object that model interested in. As we
can tell, the objects in the image are most shrouded by the attention mask, which can be inferred is that the
model is indeed learning the features and locations of the objects, the method is working smoothly.

Fig. 5: The detection token, the positional embedding of detection token and aggregated patches.

And we are make a visualization of detection token, its positional embedding and the positional
embedding of the aggregated feature map, see Fig.5. As we can see, the positional embedding of the patch
aggregated from 4 different scales is largely different from the positional embedding of normal vision
transformer [3].

4. Conclusion and Future Work
In this paper, we presented T-SSD, a single-stage object detector purely made by transformer. We

demonstrated that using transformers as building blocks, drawing instincts from typical 3-level detection
structure, and querying boxes from aggregated multiple-scaled feature maps straight forward, can give us a
competitive single-shot detector. Not only can T-SSD give us a better result compared with CNN-based
detectors whose structure and training methodology were highly-optimized, but also outperform the
transformer-based detectors with the same training methodology.

However, T-SSD also has some drawbacks, such as a big number of parameters and the desire for
computational resources, these are the major challenge standing in our way. In the future, exploring the
method of simplifying the scale of the model takes and optimizing the FLOPs are our main goals.

Source codes are available at https://github.com/YOCdot/T-SSD.

5. Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant

No.U1936213, 61872230, Program of Shanghai Academic Research Leader No.21XD1421500, Shanghai
Science and Technology Commission Project No.20020500600.

6. References
[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, \Lukasz Kaiser, I. Polosukhin, Attention

is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).
[2] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language

understanding, ArXiv Prepr. ArXiv181004805. (2018).

162

[3] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,

G. Heigold, S. Gelly, others, An image is worth 16x16 words: Transformers for image recognition at scale, ArXiv
Prepr. ArXiv201011929. (2020).

[4] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, H. Jégou, Training data-efficient image transformers
& distillation through attention, in: Int. Conf. Mach. Learn., PMLR, 2021: pp. 10347–10357.

[5] C. Szegedy, S. Ioffe, V. Vanhoucke, A.A. Alemi, Inception-v4, inception-resnet and the impact of residual
connections on learning, in: Thirty-First AAAI Conf. Artif. Intell., 2017.

[6] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016: pp. 770–778.

[7] J. Beal, E. Kim, E. Tzeng, D.H. Park, A. Zhai, D. Kislyuk, Toward transformer-based object detection, ArXiv
Prepr. ArXiv201209958. (2020).

[8] Y. Fang, B. Liao, X. Wang, J. Fang, J. Qi, R. Wu, J. Niu, W. Liu, You only look at one sequence: Rethinking
transformer in vision through object detection, Adv. Neural Inf. Process. Syst. 34 (2021) 26183–26197.

[9] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-end object detection with
transformers, in: Eur. Conf. Comput. Vis., Springer, 2020: pp. 213–229.

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg, Ssd: Single shot multibox detector, in:
Eur. Conf. Comput. Vis., Springer, 2016: pp. 21–37.

[11] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L. Zitnick, Microsoft coco:
Common objects in context, in: Eur. Conf. Comput. Vis., Springer, 2014: pp. 740–755.

[12] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, S. Savarese, Generalized intersection over union: A
metric and a loss for bounding box regression, in: Proc. IEEECVF Conf. Comput. Vis. Pattern Recognit., 2019:
pp. 658–666.

[13] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, ArXiv Prepr. ArXiv171105101. (2017).

163

	022

