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Abstract. The model abstracts the complex influence relationships between parameters as graph data, uses 

graph neural networks to calculate the spatial information between parameters, and uses long and short term 

memory networks to model the complex temporal dependencies of workshop processing quality index 

sequences. Experimental results show that the model was achieve absolute performance improvements of 

0.011, 0.001 and 2.35% compared to time series analysis methods. 
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1. Introduction 

With the continuous upgrading of a range of advanced technologies such as the Internet of Things, cloud 

computing and the Internet and their widespread use in the manufacturing sector, manufacturing companies 

have begun to transform into an intelligent manufacturing model. This new way of working, with 

digitalisation, networking and intelligence as its main features, enables the integration and automation of 

production processes [1], which has become an inevitable trend. As a core component of the transformation 

of manufacturing companies into intelligent manufacturing models, the workshop is an essential part of 

improving production efficiency and product quality [2]. The production process data derived from the 

workshop is a true reflection of the workshop manufacturing process and is also a fundamental element for 

optimising quality control in modern enterprises. Therefore, in the data-driven operation concept, the focus 

on mining meaningful information and mining key information from the shop floor production process data 

to guide the shop floor operation optimisation has attracted widespread attention from academia and industry 

[3]. 

At present, the production process on the shop floor is mainly based on setting up checkpoints at each 

production stage to ensure the manufacturing quality of the end processes. However, this approach brings 

problems, such as increased product time costs, higher staff skill requirements and greater difficulty in 

equipment inspection. Therefore, studying the impact of different process parameters on product quality in 

smart shops and designing accurate prediction models for product quality play an important role in 

improving shop floor productivity and supporting intelligent analysis and regulation in the shop floor [3]. 

Typically, industrial data is collected by industrial sensors at fixed time intervals, so that production data 

at adjacent moments in time form interdependent relationships. For the challenges in industrial data 

prediction, existing prediction methods have been studied mainly from a time-series prediction perspective. 

Initially, support vector machines showed good performance in time series data prediction, leading to some 

applications in areas such as industrial data prediction [4]. Later, with the development of neural networks, 

recurrent neural network models in the field of natural language processing were considered to be more 

accurate in solving time series prediction problems. In order to solve the problem of engineering system life 

prediction, the literature [5] proposed to use LSTM techniques to extract inter-frame information from aero-
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engine health monitoring data and use it to fit aero-engine physical degradation data, and this method 

accurately predicted the engine This method accurately predicts the remaining service life of the engine. To 

address the problem of difficult temperature prediction in electric arc furnaces during ferronickel production, 

the paper [6] constructed a multivariate time series prediction model for 16 thermocouples in electric arc 

furnaces based on gated cyclic units to support the management and maintenance of special equipment in 

complex working environments. The literature [7] uses a dynamic time delay extractor (DTDR) to process 

industrial data and then feeds it into an attention-based LSTM for training and prediction to achieve 

prediction of high-dimensional, multivariate industrial time series data. In the literature [8], a bidirectional 

LSTM network is used to model industrial sensing data for the non-linear and dynamic nature of industrial 

production process data, and the model shows good performance in industrial data prediction. 

The aforementioned studies have mainly been carried out from the perspective of time series forecasting, 

using temporal sequential order to predict future changes, however, the control relationships between 

parameters [9] have been ignored by most studies on industrial data forecasting, i.e. information provided by 

process parameters has not been included in the forecasting task, and related studies have shown that shop 

floor control relationships exhibit obvious characteristics of graph structured data [10], and in recent years, 

as graph Neural networks have received wide academic attention due to their better performance in 

processing graph data, and their concept was proposed with 2005 [11], Scarselli [12] and Micheli [13] et al. 

performed feature mapping and node aggregation on the data to elaborate the original graph neural network. 

bruna [14] et al. introduced convolutional operators into graph neural networks and proposed that weights on 

the graph shared convolutional neural network GCN, which improves the computational ability of graph 

neural networks in coping with complex graphs. 

To address the complex temporal and spatial dependencies of workshop data that are difficult to analyse 

by traditional data analysis methods, this paper proposes a multi-temporal processing quality prediction 

model G_BiLSTM based on graph neural networks and migration learning, which uses graph neural 

networks to calculate the spatial information between parameters, and uses bidirectional long and short term 

memory networks to model the complex temporal dependencies of workshop processing quality index 

sequences, for which the proposed The model is designed with relevant pre-training and migration learning 

mechanisms to form an accurate prediction of shop floor process quality driven by both temporal and spatial 

features. 

2. Model Introduction 

2.1. Problem Definition 

In the time dimension, this paper mainly considers the time dependence of the quality parameters 

themselves, i.e. their own time series feature extraction. In the spatial dimension, this paper considers the 

information obtained from the process parameters controlling the quality parameters according to the 

physical constraints, i.e. the results of the graph calculation based on the process constraints. 

For the prediction with step size , define  as the time series input to the model, corresponding to the 

time series data of the quality parameters to be predicted. At the same time, the process parameters and 

quality parameters of the workshop are constructed as a node set , their influence relationships are 

constructed as a set  according to the process document, and the weight set  corresponding to  is 

constructed to form a workshop relationship graph , initializing all elements within W to 1. 

Subsequently, W is updated by graph computation, defining  as the node feature of , corresponding to the 

data of the process parameters to be predicted. 

Therefore, the shop floor machining quality prediction task is defined as follows: the time series data  

containing temporal features are input to the shop floor machining quality temporal prediction model  to 

obtain the temporal features , the process parameter data  and the process graph data 

 are input to the graph neural network model  to obtain the spatial features 

,finally,  and  are input to the fully connected layer  to achieve feature fusion and realize 

the prediction of process quality data Y in the future period, meanwhile, the migration learning strategy 
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 is constructed to realize the prediction of ,  and  updates to improve the adaptability of 

the proposed model to new data.  

2.2. Framework Analysis 

The framework of multi-temporal machining process quality prediction based on graph neural network 

and migration learning is shown in Figure 1. influence relationship 1 is converted into the form of adjacency 

matrix [15], process parameter data 1 is used as node features and input to graph neural network to get 

spatial features, machining quality data 1 is used as input to BiLSTM to get temporal features, and the two 

types of features are spliced to get prediction results.1 To improve the model In order to improve the 

adaptability of the model, when the model accuracy is insufficient and needs to be updated, the migration 

learning strategy is set off to achieve the prediction of machining quality for the new data, i.e. influence 

relationship 2, process parameter data 2 and machining quality data 2. In the meantime, the details of the 

overall prediction model and the design of the migration strategy will be discussed in subsequent sections to 

ensure the accuracy of the prediction. 

 
Fig 1: Framework of shop floor processing quality prediction model 

2.3. Model Design 

Considering the association of workshop data in time and space, the G_BiLSTM model mainly consists 

of two parts: graph calculation and time series calculation, which implement the calculation of workshop 

spatial characteristics and the calculation of the processing quality's own time series information in the time 

domain respectively. 

(1) Graph calculation. The relationship graph  of the workshop is encoded, and if node  

affects node , then there exists an edge  to construct the adjacency matrix . The elements  within  

are calculated as shown in equation (1). 

      (1) 

In the adjacency matrix , the encoding of the elements corresponds to the encoding of the nodes, the 

positions of the elements and the corresponding values contain information about the edges, providing 

direction for the calculation of the parameters, while the graph neural network as shown in equation (2) is 

introduced.  

      (2) 

where  is the machining quality node feature , and  is the information after the graph calculation . 

After the calculation of equation (2), the process parameters are calculated for the machining quality related 

data  according to the connections in the relational graph . 

(2) Time series calculations. Considering that the time dependence of the quality parameter data is 

mainly its own, for the calculation with time step , each time the data with dimension  is input to the 
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time series prediction model , the data at the st moment is output, where  is the number of 

quality parameters. 

As shown in Fig. 2(a), BiLSTM is a two-way cyclic structure combining forward and backward in 

LSTM (Long Short-Term Memory) passing information from front to back and back to front respectively, i.e. 

for any moment , its output is composed of two parts,  and .  is the computation result of the left-to-

right calculation approach at moment  and  is the result of the right-to-left computation at moment . 

Thus, the output of BiLSTM is twice as dimensional as that of LSTM, but it can better mine the 

characteristics of the time series in time and predict the results more accurately than LSTM, which follows 

the computation as shown in equation (3). 

 

(a) BiLSTM           (b) G_BiLSTM model design 

Fig2: Model structure 
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where  is the activation function,  is the weight bias term, and  is the final output. 

(3) Feature stitching and output. Let the output dimension of the graph computation layer be , and the 

output dimension of the BiLSTM output layer be , for the spatial feature  and the temporal feature , 

their output dimensions are  and  respectively, and the stitching operation is performed on these 

two features in the second dimension to obtain the features with output dimension , on which the 

hidden layer of dimension  and the output layer of  are superimposed, where  and  

are the output dimensions of the hidden layer and the output layer respectively, and finally, the output feature 

dimension of G_BiLSTM changes from  in the hidden layer to , and in the output layer 

from  to . The predicted value  with the true value  for the output dimension of  is 

computed as Loss by equation (4), and the weights of each network layer are updated in a back-propagation 

manner. 

2
 Loss = − yY         （4） 

2.4. Migration Mechanism of G_BiLSTM Model 

In the manufacturing workshop processing, often accompanied by process adjustments, from the 

perspective of the process, process adjustments are divided into two main categories, one does not affect the 

process, such as the adjustment of process standards, such adjustments are reflected in the data as changes in 

values, while the original processing logic is unchanged, the other category of process adjustments is the 

adjustment of the production process, such adjustments change the original workshop processing logic, such 

adjustments are reflected in the data as changes in the relationship between the impact of parameters. 

Therefore, for the G_BiLSTM model proposed in this paper, the first type of process adjustment does not 

involve a change in the influence relationship between parameters, and the timing of production is not altered, 

only the prediction accuracy of the model may be reduced, therefore, the model parameters before the 

process adjustment can be used as the starting point for the training of the model after the process adjustment, 

and while avoiding wasting arithmetic power the new high-precision prediction model can be obtained 

quickly. On the other hand, the second type of process adjustment changes the control relationship between 

the production parameters and the graph data input  in the GNN is therefore changed, whereas in the case 
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of time series prediction, if the quality parameters are not adjusted, the temporal nature of the quality 

parameter data is also not changed and the parameters of the original BiLSTM model part can still be 

migrated, but the parameters in the GNN need to be retrained, whereas in the case where the quality 

parameters In the case that the quality parameters are adjusted, the parameters of the BiLSTM model part 

also have to be retrained, so the whole G_BiLSTM update strategy is shown in Figure 3. 

 

Fig. 3: Migration strategy of G_BiLSTM model 

3. Experimental Analysis 

In order to verify the validity of the proposed method, the production line of a Chinese company was 

used as the research object. This study used the production data collected in October 2022 as the data set, and 

after data pre-processing, a total of 11,877 rows of data were obtained, containing eight parameters, namely 

inlet material moisture, inlet material flow rate, hot air temperature, steam pressure, discharge damper 

opening, mixing damper opening, outlet material temperature and outlet material moisture. To verify the 

accuracy of the model, the data set was divided into a training set and a test set in the ratio of 7:3. 

Considering the time-series nature of the shop floor data, GRU [16], LSTM [17] and RNN [18] networks 

were selected as the control set and these networks were used to learn the time series features of the process 

parameters and the quality parameters to be predicted and to achieve the time series prediction of the two 

quality parameters. 

The process flow of the line is shown in Figure 4(a). The plant sensors need to measure the moisture and 

flow rate of the inlet material, which are important indicators for monitoring the state of the material. During 

the production process, the material is mainly affected by the hot air temperature and moisture, which in turn 

are controlled by other parameters, so the hot air temperature and moisture as well as other parameters need 

to be collected and analysed. Ultimately, the quality of the shop floor process can be assessed by monitoring 

the exit material temperature and moisture of the finished product, which is one of the important indicators 

for process quality evaluation. 

In this paper, the model code is written in Python and a neural network model is constructed using the 

PyTorch framework. The GRU, LSTM and RNN networks are implemented based on the torch.nn function 

library in the PyTorch library, respectively, and the GLSTM network is built using the Networkx library with 

the PyTorch library. The Intel i7-10750 processor was used for computing during the training of the models. 
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（a）Process relationship of workshop     (b) Process relationship graph data of silk workshop 

Fig 4 Process relationship in the silk making workshop 

In actual production, some parameters may not be available for acquisition, such as steam temperature 

and hot air temperature. As these two parameters are not available, they are not involved in the calculation. 

In the case of process relationship diagram data as shown in Figure 5(b), setting , the G_BiLSTM 

model will use the shop floor time series data from the first 8 time points to predict the shop floor quality 

indicator data from the next 1 time point. This approach is often referred to as time series forecasting and it 

uses past data to predict future trends and patterns. 

In this paper, the Optuna [19] optimisation framework was used to perform 100 parameter search for 

optimisers, learning rates and the number of fully connected layer cells for four models with the objective of 

maximising the fitted value R. In the parameter search process, the optimizer optimization range was set to 

[RMSprop, Adam, SGD], the learning rate optimization range was set to [1e-02, 1e-03, 1e-04, 1e-05, 1e-06], 

and the number of fully connected layer cells optimization range was set to [4,8,16,32,64,128]. In the end, 

the best combination of parameters for the four models was obtained through parameter search. This process 

resulted in a better combination of parameters for the model, thus improving its performance and accuracy. 

In this paper, three metrics were used to assess the validity of the models [20], namely the mean absolute 

error, the mean square error, and the goodness of fit R2. For an accurate assessment, 100 calculations were 

performed on four different models and their average results were taken for comparison. The comparison on 

the test set resulted in the predictive performance of the four models shown in Figure 5. In addition, the 

specific values of these metrics were summarized in Table 1 to better present the evaluation results of the 

models. 

Table 1: Comparison of the error of the comparison experiments 

 G_BiLSTM GRU LSTM RNN 

MAE（rate of water content） 6.15E-03 9.86E-03 1.35E-02 9.66E-03 

MAE（temperature） 2.45E-02 4.21E-02 4.90E-02 5.35E-02 

MSE（rate of water content） 5.84E-05 1.33E-04 2.42E-04 1.48E-04 

MSE（temperature） 1.09E-03 2.54E-03 3.20E-03 4.31E-03 

R2（rate of water content） 9.88E-01 9.72E-01 9.48E-01 9.68E-01 

R2（temperature） 9.76E-01 9.45E-01 9.31E-01 9.07E-01 

 

 
Fig. 5: Graph of predicted results of the comparison experiment 
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To analyze the contribution of GNN and BiLSTM in the G_BiLSTM model, two independent models 

were obtained by removing the feature splicing part: GNN and BiLSTM. where GNN uses only spatial 

information for quality prediction, while BiLSTM uses only temporal information for quality prediction, and 

the parameters of the models are the same as those of the G_BiLSTM model in Table 1. The average results 

of 100 calculations for the three models are shown in Figure 6, and the corresponding evaluation results are 

shown in Table 2. 

The results show that G_BiLSTM outperforms the GRU, LSTM and RNN models in the three metrics of 

MAE, MSE and goodness-of-fit. Compared with the best-performing GRU model, G_BiLSTM showed 

absolute improvements of 0.011, 0.001, and 2.35% in the three metrics of MAE, MSE, and R2, respectively. 

The results of the ablation experiments show that the G_BiLSTM model has a relative improvement of 0.012, 

0.001 and 5.60% in MAE, MSE and R2 metrics, respectively, relative to the BiLSTM model due to the 

inclusion of the spatial features calculated by GNN. In summary, G_BiLSTM is a better forecasting 

algorithm with wide application prospects in dealing with time series forecasting problems. 

Table 2 Comparison of errors in ablation experiments 

 GLSTM GNN BiLSTM 

MAE（rate of water content） 6.14E-03 1.11E-02 1.07E-02 

MAE（temperature） 2.44E-02 6.05E-02 4.29E-02 

MSE（rate of water content） 5.84E-05 1.93E-04 1.45E-04 

MSE（temperature） 1.09E-03 4.89E-03 2.69E-03 

R2（rate of water content） 9.88E-01 9.59E-01 9.69E-01 

R2（temperature） 9.77E-01 8.94E-01 9.42E-01 

 
Fig. 6: Graph of predicted results of ablation experiments 

The experimental results show that G_BiLSTM can more completely consider the complex spatio-

temporal dependencies of shop floor data by modeling the complex relationships of shop floor metrics in 

space and time using GNN. For example, it is able to capture the time-series relationship of process 

parameters on machining quality under physical constraints. Compared with deep time series models, 

G_BiLSTM can better cope with the complexity of shop floor data and improve the accuracy and reliability 

of prediction. Therefore, G_BiLSTM has important research and application value, especially in scenarios 

when shop floor data needs to be considered from multiple dimensions and perspectives. 

4. Conclusion 

In this paper, a multi-temporal machining process quality prediction model called G_BiLSTM is 

proposed to address the problem that it is difficult to analyze the complex dependencies of shop floor data in 

time and space by traditional data analysis methods. The model is based on graphical neural networks and 

migration learning methods, using graphical neural networks in computing spatial information among 

parameters and bi-directional long- and short-term memory networks in modeling the complex dependencies 

of shop floor machining quality index sequences in time. In addition, relevant pre-training and migration 

learning mechanisms are designed to form accurate predictions of shop floor machining quality driven by 

both temporal and spatial features. Compared with traditional methods, G_BiLSTM can better handle the 

spatio-temporal complexity of shop floor data and improve the accuracy and reliability of prediction. 

Therefore, the model has important research and application value, especially in the scenario when shop 

floor data need to be considered from multiple perspectives. 
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