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Abstract. Recent advances in deep convolutional neural networks have significantly improved instance 

segmentation. In large-scale remote sensing images, however, the high density, arbitrary shapes and orientation, 

large aspect ratios, and huge scale variation of the objects pose significant challenges to general instance 

segmentation algorithms. In this paper, we propose a new framework, called non-local dense RepPoints, to 

improve the performance of instance segmentation in remote sensing images. First, we propose a hierarchical 

non-local block that iteratively integrates global information, and our method enables the model to accurately 

represent the relationship between two locations. Second, we enhance Dense RepPoints by designing an 

efficient dynamic vector to more efficiently model the objects by a large number of adaptive points. We conduct 

experiments on the iSAID dataset and compare our method with several commonly-used state-of-the-art 

networks. The experimental results demonstrate that our proposed approach can achieve promising results. 
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1. Introduction 

Due to the rapid development of optical remote sensing technology, modern satellites are able to acquire 

remote sensing images with very high resolution (VHR). Instance segmentation aims to recognize the category 

labels of individual objects and localize them using pixel-level masks. It plays an essential role in many 

applications in the field of remote sensing, such as urban management [1] [2] [3], land planning [4] [5], and 

land cover classification [6] [7] [8]. However, instance segmentation in remote sensing scenes is more 

challenging than natural scenes due to the following characteristics of remote sensing scenes: 

1) Objects in geospatial space tend to appear randomly distributed in the image, with arbitrary shapes and 

orientations, as well as occlusions. Consequently, non-local information interaction is crucial in remote sensing 

scenarios. 

2) The background ratio in remote sensing scenes is extremely high, and the background is more complex 

than natural scenes. It causes a severe drop in accuracy due to excessive intra-class variance. 

3) Due to the high density and large-scale variation of the object, it brings a multi-scale challenge to 

existing methods. 

 
Fig. 1: Three challenging aspects of instance segmentation in remote sensing. 

As a result of the development of deep convolutional neural networks [9] [10] [11], many deep learning-

based approaches have been proposed to improve the accuracy and speed of instance segmentation. Some 

powerful network structures, such as Mask R-CNN [12], SOLO [13], and Dense RepPoints [14], have been 
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widely used in natural scene. However, instance segmentation in remote sensing is still challenging in three 

aspects (as shown in Fig. 1): (1) Objects occur in a high density and an assortment of shapes and orientation. 

(2) The background in the VHR remote sensing image is much more complex. (3) The scale of remote sensing 

images is much larger, and the object exhibits large-scale variation. 

In the recently proposed Dense RepPoints method, objects are represented by a large number of adaptive 

points, which effectively improves the detection of small objects and simplifies the formulation of instance 

segmentation. However, it requires a large number of points (i.e., 729 points) to represent the object, which is 

evidently inappropriate for remote sensing images. In addition, the method fails to characterize non-local 

relationships, resulting in insufficient interactions between locations. 

In this work, we improve Dense RepPoints from two aspects: non-local relations and adaptive 

representative points. First, we design a hierarchical non-local block to model global context, which can 

enhance the model's ability to capture long-range dependencies and model the relationships of related objects 

over long distances iteratively. Second, we propose an effective dynamic vector for adaptive point regulation. 

By adding an auxiliary offset, we perform a finer correction of representative points, thereby enabling our 

model to accurately predict objects with fewer points. Non-local Dense RepPoints achieves not only state-of-

the-art performance, but also superior adaptability and stability in the extensive experiments on the iSAID 

dataset. Our goal is to develop a framework for instance segmentation in remote sensing that is stronger, faster, 

and more robust. 

The main contributions of our work are as follows: 

(1) We propose Non-local Dense RepPoints to improve the efficacy of instance segmentation in remote 

sensing. It promotes semantic interaction in various locations and adds an auxiliary offset to improves 

prediction accuracy for dense objects, making remote sensing more applicable. 

(2) We design a hierarchical non-local block to capture pixel-wise global information and derive more 

robust relationships between locations in a more efficient and effective manner. 

(3) We propose an efficient dynamic vector to regulate the adaptive points with finer corrections for 

representative points, thereby improving the prediction quality and enabling our model to accurately predict 

objects by fewer points.  

(4) We obtain the state-of-the-art performance on iSAID datasets. Extensive experiments demonstrate that 

our model has the superior adaptability and stability. 

2. Related Work 

2.1. Framework of Instance Segmentation 

Instance segmentation is challenging because it requires both instance-level and pixel-level predictions. 

The existing methods can be categorized into two groups. Two-stage instance segmentation usually expresses 

this task as a detect-and-then-segment paradigm. Typically, they first detect the bounding boxes and then 

segment within the region of each bounding box. Most of the two-stage work builds on Faster R-CNN [15], 

such as Mask R-CNN, by adding an additional mask branch and employing RoI-Align rather than RoI-Pooling 

to improve performance. PANet [16] introduces bottom-up path augmentation, adaptive feature pooling, and 

fully connected fusion to improve the accuracy. In summary, the aforementioned frameworks consist of two 

steps: detecting and then segmenting the object in the box. They can attain cutting-edge performance but are 

frequently slow. 

One-stage methods seek to dealing with instance segmentation directly without requiring box detection or 

embedding learning as a prerequisite. Deep Watershed Transform predicts the energy map for every pixel and 

groups them using the watershed algorithm. Polarmask formulates the problem as the prediction of an 

instance's profile based on classification of the instance's center and dense distance regression in polar 

coordinates. Dense RepPoints utilizes a large set of points to describe an instance. In these methods, each pixel 

generates auxiliary information, which is then used by a clustering algorithm to group object instances based 

on their information.  

2.2. Non-local Context Modeling 
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There has been a significant amount of work aimed at incorporating contextual information into existing 

deep learning models. One type of strategies tends to aggregate context information by stacking many local 

operations, such as the convolution operator [17] or the recurrent operator [18]. These models are usually 

defined on features with local neighborhoods or specific computational functions, which are limited in 

modeling non-local context relationships by stacking local receptive fields and short-range context. Pixel-level 

interaction based on attention mechanisms is also a common strategy. Non-local neural networks [19] utilize 

the self-attention that enables a single feature from any location to perceive features from all other locations. 

DANet [20] proposes spatially-wise and channel-wise attention modules to enhance feature representation. 

However, the redundant computations in these methods lead to prohibitive noise, which hinders its application, 

particularly in some intensive prediction tasks.  

2.3. Deformable Convolution  

In traditional convolutional layers, the kernel is fixed and independent of the input, i.e., the weights are 

identical for each image and each location of the image. To bring more flexibility to traditional convolution, 

deformable convolution [21] is a powerful and efficient mechanism that can handle sparse spatial locations. It 

learns the sampling locations dynamically by predicting the offsets for each image location. RepPoints [22] is 

inspired by it, and Dense RepPoints brings the dynamic mechanism into instance segmentation. We enhance 

it further to make it more appropriate for remote sensing images.  

2.4. Remote Sensing Image Understanding 

Remote sensing image understanding is one of the hottest topics in the computer vision community. 

Remote sensing scenes are more complex because they consist of more multi-scale objects and a larger 

proportion of small objects in the imagery. There have been plenty of recent works to solve the aforementioned 

problems. For geospatial instance/object detection, Wang et al. [23] proposes single-shot detection for multi-

scale objects, and Chen et al. [24] introduces a pipeline of hybrid supervision for geospatial instance 

segmentation. Fully-weighted HGNN [25] captures both short- and long-range dependencies in spatial features 

by hypergraph. In large-scale instance segmentation, HMANet [26] captures global context from the 

perspectives of space, channel, and category. Sun et al. [27] concentrates on improving geospatial object 

segmentation in complex scenes using a semi-supervised method. 

3. Methodology  

We present the details of the proposed Non-local Dense RepPoints in this section. 

3.1. A Revisit to Dense RepPoints 

Vanilla RepPoints represents an object with a few representative points (𝑛 =  9). A few points are 

sufficient for object detection because the category and bounding box of an object can be fit with few points. 

Nevertheless, instance segmentation provides annotations at the pixel level for objects requiring precise 

estimation for fine-grained geometric localization. Consequently, a larger volume of point sets and a vector of 

attributes associated with each representative point are required to describe the object: 

𝓡 = {(𝒙𝒊 + ∆𝒙𝒊 ,  𝒚𝒊 + ∆𝒚𝒊 , 𝒂𝒊)}𝒊=𝟏
𝒏 ,                                                 (1) 

where 𝑎𝑖 is the attribute vector associated with the 𝑖-th point. 𝑥𝑖 and 𝑦𝑖 denote an initialized location. ∆𝑥𝑖 and 

∆𝑦𝑖 are learnable offsets, and 𝑛 is the number of points. 

The feature of each point ℱ(𝑝) is extracted from the feature map ℱ by bilinear interpolation, and the 

feature of a point set ℱ(𝑝) can be defined as the concatenation of all adaptive representative points of ℛ: 

𝓕(𝓡) = 𝐜𝐨𝐧𝐜𝐚𝐭(𝓕(𝒑𝟏), … , 𝓕(𝒑𝒏)),                                                   (2) 

which is employed to recognize the category of the point set. The object segment of a point set can be obtained 

by a conversion function. 

In instance segmentation, the attribute map can be defined as the foreground score of a point set. Therefore, 

Dense RepPoints proposes a point-level classification loss 𝐿cls
𝑝

 and a point-level localization loss 𝐿loc
𝑝

, in 
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addition to the box-level classification and localization terms 𝐿cls
𝑏  and 𝐿loc

𝑏 . The objective function can be 

expressed as: 

                                                               𝑳𝐝𝐞𝐭 = 𝑳𝐜𝐥𝐬
𝒃 + 𝑳𝐥𝐨𝐜

𝒃 ,                                                                    (3) 

                                                             𝑳𝐦𝐚𝐬𝐤 = 𝑳𝐜𝐥𝐬
𝒑

+ 𝑳𝐥𝐨𝐜
𝒑

,                                                                   (4) 

                                                                𝑳 = 𝑳𝐝𝐞𝐭 + 𝑳𝐦𝐚𝐬𝐤,                                                                    (5) 

where 𝐿𝐜𝐥𝐬
𝑝

 is responsible for predicting the representative point foreground score, and 𝐿𝐥𝐨𝐜
𝑝

 is for learning point 

localization. 

 
Fig. 2: Architecture of our Non-local Dense RepPoints. 

3.2. Non-local Dense RepPoints 

As shown in Fig. 2, we propose the Non-local Dense RepPoints architecture for more precise instance 

segmentation tasks in remote sensing scenes. The model is divided into three parts: Backbone for extracting 

image feature maps, Non-local module + Feature pyramid networks (FPN) [28] for non-local feature 

interactions at multiple scales, and Head for recognition and classification. 

In this paper, we adopt ResNet as Backbone to extract the feature maps of the images. Since our main 

innovations are Hierarchical Non-local Block and Dynamic regulate for Dense RepPoints, in the following, 

we will mainly introduce these methods. 

 
Fig. 3: Illustration of an non-local block. 

3.3. Hierarchical Non-local Block 

Traditional global feature interactions often adopt global feature interactions based on self-attention, and 

such methods have obtained excellent model performance and effects in natural scenes. However, due to the 

complex and high background ratio in remote sensing scenes, the traditional global feature interaction often 

introduces additional background noise in the interaction process. To tackle this problem, we propose the 

Hierarchical Non-local Block, which improves the model’s focus on the effective information by filtering the 

noise of the feature vector after the interaction by the hard-link module. Meanwhile, the Hierarchical Non-

local Block contains a trainable gating mechanism that can filter the background noise twice by adjusting the 

weights of the original input and global interaction features, as shown in Fig. 3. 

We design a hard-link module that uses a threshold 𝜃  to filter correlated noise that is too small and 

normalizes it by the softmax function. The hard-link module is calculated as follows: 

𝓦 = 𝐬𝐨𝐟𝐭𝐦𝐚𝐱(𝐖) {
𝐖𝒊,𝒋 = 𝐖𝒊,𝒋, 𝐖𝐢,𝐣 > 𝜽,

𝐖𝒊,𝒋 = 𝟎, 𝐖𝒊,𝒋 < 𝜽,
                                      (6) 

where 𝑊 is calculated by matrix multiplication of 𝑄 and 𝐾. 
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Given that the original feature map 𝑋src and the feature map 𝑋𝑔 after global interaction will carry different 

noise information, we propose a gating mechanism to suppress noise interference in order to reduce noise 

interference. The formula of the gating mechanism is as follows: 

𝛾 = 𝜎(𝑊𝛾𝑋src + 𝑈𝛾𝑋𝑔 + 𝑏𝛾),                                                                 (7) 

𝑋 = 𝛾 ⊙ 𝑋src + (1 − 𝛾) ⊙ 𝑋𝑔,                                                               (8) 

where 𝑊𝛾  and 𝑈𝛾  are learnable weight matrices.  𝑏𝛾  is the bias, and 𝛾  is sigmoid function. 𝑋  represents 

features after interaction. 

 
Fig. 4: Illustration of dynamic regulation method. 

3.4. Dynamic Regulate for Dense RepPoints 

Dense RepPoints adopt the method of initializing representative points from the center point and then 

refining them to generate object contours. This approach achieves excellent results in natural scenes, however, 

in remote sensing images, the model cannot locate the object contour directly and effectively due to the objects 

with arbitrary shapes and orientations, as well as occlusions. In addition, since Dense RepPoints only uses a 

single refinement, it is necessary to initialize a large number of representative points, and the method suffers 

from an inordinate amount of redundancy due to the high density of objects in the remote sensing scene.  

To solve the above problem, we propose the dynamic regulation method, which improves the precision of 

model prediction of object contours by secondary regulation of feature nodes. The structure is shown in Fig. 

4. Specifically, we add an additional dynamic convolutional layer to learn the Dynamic regulation weight in 

order to optimize the refind offset. By employing additional Dynamic regulation, the secondary correction of 

refind offset is achieved, allowing the method to be more applicable to remote sensing scenes and to extract 

the target contour more accurately. This method also reduces the number of initialization points, thus reducing 

the computational effort and making it applicable to high-density scenes. 

4. Experiments 

4.1. Dataset and Metrics 

iSAID [29] contains 2,806 aerial images with high-quality annotations, which is the largest dataset for 

instance segmentation in aerial images. It contains 655,451 instance annotations for 15 categories varying 

greatly in scale, orientation, and aspect ratio. The spatial resolution of images ranges from 800 to 13,000 in 

width. The training set includes 1411 aerial images, the validation set contains 458 aerial images and the test 

set includes 937 aerial images. The biggest challenge with the iSAID dataset is the extreme foreground-

background imbalance problem, where the foreground ratio is significantly smaller than the background ratio. 

In addition, the background is much more complex, which leads to significant false positives due to large intra-

class differences. As the official evaluation server of iSAID is still being improved and annotations for the test 

set are not available, this paper evaluates the method of this paper on the validation set.  

We use the standard COCO metrics [30]: AP (averaged over IoU threshold), AP50, AP75, APS, APM, APL, 

respectively. 

4.2. Training Details 

We used PyTorch to implement our model. All experiments were conducted on 4 Nvidia GeForce RTX 

3090 Ti GPUs. The model was trained with stochastic gradient descent (SGD) optimizer. If not specifically 
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specified, the model was trained for 24 rounds (i.e., two training cycles). In addition, the initial learning rate 

of the model is 0.006, which decays to 10% of the original at the 16th and 20th rounds, respectively. The 

weight decay and momentum parameters were set to 10−4 and 0.9, respectively. All ablation studies were 

conducted on the validation set using ResNet-50 and FPN as the underlying backbone network. 

Table 1:  Instance segmentation mask AP (%) on iSAID val dataset. ∗ indicates training with scale augmentation. 

Method Backbone Epochs AP AP50 AP75 APS APM APL 

Two-stage:         

Mask R-CNN  ResNet-50-FPN 24 34.2 57.9 38.1 21.7 39.4 46.9 

Mask Scoring R-

CNN 

ResNet-50-FPN 
24 36.4 58.2 38.7 25.1 41.4 48.6 

One-stage: ResNet-50-FPN 24 28.7 49.9 27.4 14.9 32.4 40.1 

YOLACT ResNet-50-FPN 24 27.7 48.6 25.6 14.5 34.9 38.8 

PolarMask ResNet-50-FPN 24 32.5 53.2 32.4 18.1 36.8 42.6 

Dense RepPoints ResNet-50-FPN 24 33.9 55.2 33.8 19.6 37.5 44.3 

Non-local Dense 

RepPoints 

ResNet-50-FPN 
24 36.8[+2.9] 58.3 39.6 25.5 42.3 48.9 

Non-local Dense 

RepPoints 

ResNet-101-FPN 
48 37.9[+4.0] 59.2 42.6 26.1 43.5 50.3 

Non-local Dense 

RepPoints* 

ResNet-101-FPN 
48 38.5[+4.6] 59.9 42.8 27.2 44.7 50.1 

 

Table 2:  Ablation studies of number of points on iSAID validation dataset. 

Number of Points AP 

9 34.9 

25 35.7 

81 36.8 

121 36.5 

4.3. Quantitative Analysis 

To demonstrate the effectiveness of our Non-local Dense RepPoints in instance segmentation, we compare 

our network with several strong baseline methods, including both two-stage methods (Mask R-CNN, Mask 

Scoring R-CNN) and one-stage methods (YOLACT, PolarMask, SOLOv2, and Dense RepPoints). Table 1 

shows the results on the validation set of the iSAID dataset, where “*” denotes the training results enhanced 

by multi-scale. We can see Non-local Dense RepPoints achieves the best results for instance segmentation, 

outperforming other two-stage models. With the ResNet-101 pre-trained model, Non-local Dense RepPoints 

can achieve 37.9 mAP after 48 rounds of training, outperforming all other methods; by increasing the training 

scale of the model via multi-scale augmentation, the method can achieve 38.5 mAP, yielding the best 

performance among all models. It demonstrates that our proposed model can accurately locate and detect 

objects in aerial images.  

Table 3:  Ablation studies of non-local module in different feature maps on iSAID validation dataset.  

Method  AP AP50 AP75 APS APM APL 

Dense RepPoints:       

FPN  33.9 55.2 33.8 19.6 37.5 44.3 

+2 35.0 57.4 37.5 22.9 39.1 46.6 

+3 34.8 56.8 38.1 22.5 38.8 47.3 

+4 35.2 57.1 37.9 23.6 39.5 47.1 

+234 (non-local module) 35.5 57.8 37.9 24.6 39.8 47.6 
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We attribute the improvement to the following aspects: (1) Our model can capture short- and long-range 

dependencies to iteratively model relations between related objects; (2) Dynamic regulation for Dense 

RepPoints can effectively adjust the position information of the predicted points to more accurately distribute 

them on the target contour, thus improving the prediction performance of the object position.  

Analysis on Variant Models. We conduct ablation experiments by varying the number of points, and the 

results are shown in Table 2. We find that the model's performance is gradually improved as the number of 

points rises, however, when the number of points reaches a certain threshold (tested as 81 in our experiments), 

the performance stops increasing. We further compare our method with Dense RepPoints, and we find that our 

methods using 81 points can even outperform Dense RepPoints with 729 points.  

We also conduct ablation studies by applying the non-local module on feature maps at different scales, 

and the results are shown in Table 3. We find that the inclusion of the module in all scale leads to performance 

improvements, with the module being the most significant at the highest level, where a 1.3 mAP improvement 

can be achieved. This is due to the fact that this integration strategy integrates global information from the 

upper layer to all subsequent layers. In addition, we apply the non-local module to multiple stages, augmenting 

the feature graph with multi-scale contextual information for more efficient global information interaction. 

 

Fig. 5: Three challenging scenarios. 

 

Fig. 6: Comparison between our Non-local Dense RepPoints and the classical method. 

4.4. Qualitative Analysis 

Fig. 5 visualizes three classic and challenging scenarios: (a) arbitrary shapes and orientations; (b) a 

complex background; and (c) large-scale transformations. Our method shows excellent results in these 

complex scenes. The comprehensive learning and interaction of global spatial features and the secondary 

optimization of the target's contour points allow the model to effectively identify and decode targets in scenes 

with high density, targets with occlusion or noise, and large-scale transformations. Notable also is the fact that 

the method still produces satisfactory results for objects subject to large-scale transformation conditions.  

Fig. 6 shows the visualization of our method and other classical methods in the same scene. By comparison, 

we find that Non-local Dense RepPoints achieves the best visualization results, in terms of object recognition 

rate and object contour. 

5. Conclusions and Future Work 
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In this paper, we explored the instance segmentation in remote sensing. Based on the Dense RepPoints 

model, we proposed Non-local Dense RepPoints that are more applicable to remote sensing scenes. It enhances 

the Dense RepPoints in two aspects: non-local relations and adaptive representative points. First, we designed 

a hierarchical non-local block to model the global context, which improves the ability of the model to capture 

short- and long-range dependencies to iteratively model relations of related objects. Second, we proposed an 

effective dynamic validation method to regulate the adaptive points. By including a supplementary offset, we 

apply a finer correction to the representative points, which also allows our model to accurately predict objects 

with fewer points. 

We conducted extensive experiments on iSAID dataset. As expected, the experimental results validate the 

efficiency of Non-local Dense RepPoints with the state-of-the-art performance and the superior adaptability 

and stability. We believe that our model will significantly inspire scholars in remote sensing and encourage 

more research on instance segmentation to apply to real-life situations. In the future, we hope to address the 

omissions in current work and expand our model to more remote sensing image interpretation tasks, such as 

rotating object detection and large-scale semantic segmentation. 
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