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Abstract. Face clustering is a very useful method in image annotation, image retrieval and other real-world 

applications. The main challenge is that with the increasing data scale, the large graph constructed by KNN is 

difficult to train due to out of memory. At the same time, the image features of the previous face clustering 

methods are extracted through CNN, which is not conducive to obtaining the global features of the image. In 

this paper, we propose a method that uses transformer to extract image features. Then, we use the extracted 

image features to construct a large graph by KNN, and we randomly partition the large graph into several 

non-overlapping subgraphs through METIS. In addition, we use hypergraph convolution to learn deeper 

high-order graph structure data. Experiments on both MS-Celeb-1M and DeepFashion show that our method 

achieves state-of-the-art performance, eg.90.08% in pair-wise F-score on MS-Celeb-1M. 

Keywords: Face clustering, Transformer, Hypergraph convolution network, Large graph. 

1. Introduction 

In recent years, we have witnessed remarkable progress in the performance of face clustering and it has 

been successfully applied in many real-world application scenarios. Large-scale well-labeled data is the key 

to the success of high performance face recognition systems. However, well-labelled data increasingly relies 

on large-scale data. Face clustering is a very effective method to solve a large number of unlabeled data. 

So far, there are many face clustering methods, these methods can be roughly divided into two categories, 

respectively supervised face clustering and unsupervised face clustering. Unsupervised methods mostly rely 

on certain assumptions, for example, K-means [1]requires that the distribution of clusters be convex, and 

DBSCAN [2] requires that the density of clusters must be greater than a certain threshold. Thus, 

unsupervised methods lack the ability of deal with complex cluster structures. The research work of 

clustering algorithm based on deep learning shows that supervised face clustering is a promising method, 

which can effectively improve the clustering effect and significantly improve the performance. The existing 

supervised face clustering methods almost all benefit from the representation ability of graph convolution 

and obtain better performance in large-scale face clustering data baseline. CDP [3] proposes a supervised 

Metric for face clustering to partially solve the problems of unannotated data with complex internal structure, 

dependence on specific metrics, and lack of Outlier control. L-GCN [4] converted face clustering into 

linkage prediction problem for processing, and the whole graph was divided into some connected 

components, and each connected component was a cluster of clustering results. Lei et al. [5] proposed GCN-

V+E clustering algorithm, GCN-V+E uses two GCN to complete face clustering, one GCN to estimate the 

confidence of nodes, the other to measure whether there is a connection between nodes. However, firstly, 

previous face clustering methods (both supervised and unsupervised) extract features through common 

convolutional neural networks. The features extracted by this method are difficult to obtain the global 

information of the image. Inspired by the success of ViT (Vision Transformer) [6] models. We design a 

simple ViT model to extract facial image features. Secondly, it is worth noting that when the scale of training 
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data is large, the graph constructed by KNN will be very large, and the input of this large graph into GCN [7] 

or HGCN model will be out of memory. L-GCN is a typical method to train with subgraphs, but this method 

will produce many overlapping subgraphs. To this end, we designed an algorithm to partition a large graph 

into subgraphs. This algorithm not only allows the model to be well trained, but also the partitioned 

subgraphs are non-overlapping. Finally, graph convolutional neural network (GCN) is a model that applies 

deep neural network to graph structure data. To get deeper feature embedding, you have to stack multiple 

layers of GCNS, but stacking more layers into GCNs will encounter the vanishing gradient and network 

degradation problem, finally the features of graph nodes converges to the same value [8]. Therefore, in order 

to learn the graph structure data of high-order deep embedding more effectively, instead of graph 

convolution network (GCN), we use hypergraph convolution network (HGCN) [9] to obtain higher order 

graph embedding data. 

The main contributions are in three aspects: (1) We design a simple ViT model to extract facial image 

features, which is able to capture the global features of the image. (2) An algorithm is proposed to partition 

the large graph into non-overlapping subgraphs. (3) Instead of graph convolution network, hypergraph 

convolution network is used to embed higher-order graph structure data. 

2. Related Works 

2.1. Unsupervised Face Clustering  

We first briefly introduce face clustering methods, then give a brief introduction to graph convolutions, 

hypergraph convolutions, and transformer.  

Early face clustering generally adopts LBP (Local Binary Pattern), HOG (Histogram of Oriented 

Gradient) and other methods to manually make features, which is out of date and out of the scope of our 

discussion. For example, Cui et al [10]. use LBP features. In recent years, deep learning has become a hot 

research direction due to its high performance, and face clustering in the era of deep learning generally uses 

features extracted from convolutional neural networks (CNN) [11].Existing unsupervised face clustering 

including K-means [1], DBSCAN [2], Spectral [12], Hierarchical Agglomerative Clustering(HAC) [13], 

Rand Order [14], etc. are based on features extracted from CNN for clustering. K-means clustering, spectral 

clustering and DBSCAN usually rely on making different assumptions on the data, which are difficult to 

meet the complex application scenarios in the real world. K-means assumes a spherical distribution within 

intra class, and that each class has the same variance. DBSCAN calculates empirical density, designating a 

cluster as a dense area in the data space. However, DBSCAN cannot reflect high-dimensional data well, and 

if the density of data sets is uneven or the cluster spacing is very different, the clustering quality is poor. 

Spectral cluster is widely used in clustering due to its excellent performance. Compared with other 

unsupervised clustering, Spectral cluster has no requirements on data structure assumptions. However, 

Spectral cluster is sensitive to parameter selection.  Hierarchical Agglomerative Clustering (HAC) algorithm 

is a good clustering algorithm, but it tends to form chain clusters and is sensitive to outliers, which affects the 

clustering effect. Rank-order proposed a relational measure based on local context, but the time complexity 

of this clustering algorithm is high and its time complexity is      . The Approximate Rank-Order 

clustering algorithm (ARO) [11] proposed an approximate order measure to reduce operating costs. 

Compared with other clustering algorithms, ARO is much more efficient because its computational 

complexity is only      . 

2.2. Supervised Face Clustering 

With the development of graph convolution network and its successful application in the field of 

computer vision [15], face clustering algorithm based on graph convolution network has become the main 

research trend at present. Firstly, the graph is constructed according to the similarity of the sample spatial 

data, and then the constructed graph is used as the input of the graph convolution model. Therefore, the 

clustering problem is transformed into the graph problem, and finally the clustering result is formed. CDP [3] 

proposes a supervised Metric for face clustering to partially solve the problems of unannotated data with 

complex internal structure, dependence on specific metrics, and lack of Outlier control. L-GCN [4]  proposed 

a link-based GCN to predict the connection between the central axis node and its neighbors through the 
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embedding of enhanced edges. GCN-V+E [5] uses two stacked GCNs to estimate vertex confidence and 

construct edges from these high confidence levels. DA-GCN [16] uses GCN to aggregate local features, and 

then uses density chains (from low density to high density face chains) to combine non-local information. In 

addition, some methods involve new clustering frameworks.  After constructing clustering results with 

traditional methods, additional post-processing models are used to obtain more accurate clustering results.  

DS-GCN [17], a typical work of this approach, designed a partitioning algorithm to generate multiscale 

subgraphs and proposed a two-stage supervised framework to determine the desired clusters from them. 

2.3. Graph Convolution Network 

Graph is a classical non-European data structure that is very common in the real world. For example, the 

reference relationship between the representation papers can be represented by a graph, the relationship 

between the representation users can be represented by a graph, and the network of protein molecules in 

biology can be represented by a graph. Graph neural network is the most classical and common method to 

deal with this kind of non-Euclidian structure data. Graph convolutional network is a kind of graph neural 

network. It can be regarded as extending the convolution operation of CNN to deal with graph structured 

data. Graph Convolutional Networks have also been successfully applied to different tasks [18]. Graph 

Convolutional Networks (GCNS) [7] has achieved excellent performance in Graph structure data. According 

to the definition of graph data convolution, GCNs can be divided into spectral method and spatial method.  

Spectral GCNs mainly uses graph Fourier transform to carry out convolution generalization [22], while the 

core idea of spatial method is to aggregate information of adjacent nodes[24].Some recent work has extended 

GCNs to work with large graph.  Hamilton et al. [19] proposed GraphSAGE algorithm, the main idea of 

which is to sample a fixed number of neighbors in each layer for aggregation. FastGCN proposed by Chen et 

al. [25] further reduces the computational cost by sampling vertices instead of neighbors. Cluster-GCN [26] 

is a training algorithm based on subgraph, which is constructed by clustering on the whole graph. 

2.4. Hypergraph Convolution Network 

Graph neural network has attracted wide attention in various research fields and has made remarkable 

achievements. Most algorithms assume that the nodes in the graph are paired, that is, an edge can only 

connect two nodes. However, in many practical applications, the relationship between objects is high order, 

beyond the pair relationship, which may lead to uneven data distribution, unable to accurately describe the 

relationship between objects and other problems. We call the edge of the hypergraph a hyperedge. A 

hyperedge can contain any number of vertices. Hypergraph learning is the first introduction proposed in a 

pioneering work [27]. and has been introduced for encoding high-order correlation in many applications, 

such as image retrieval, image segmentation, 3D model classification. Inspired by the remarkable success of 

GCNs Models, many hypergraph neural networks are proposed to obtain the representation of hypergraphs. 

HGNN [28] first used Laplacian hypergraph operator to represent hypergraph from the spectral perspective. 

HyperGCN [29] trains GCNs on hypergraphs using the spectral theory of hypergraph. HNHN [30] designed 

a convolutional network combining hypernodes and Hyperedge features, which was based on the 

normalization of hypergraphs with cardinality. Zhang et al. [31] proposed a learnable Hypergraph Lapalcian 

module for updating the hypergraph topology during training. 

2.5. Transformer and Its Variants 

Transformer is a classic NLP model introduced by the Google team in 2017[32].The Transformer model 

uses the Self-Attention mechanism instead of RNN's sequential structure, which allows the model to be 

trained in parallel and to have global information. As ViT [6] has been successfully applied to image tasks, 

Transformer's development in image is becoming increasingly rapid, and the Transformer system in visual 

tasks is becoming rich increasingly. Although ViT has achieved considerable performance in image 

classification tasks, the performance of semantic segmentation for high-resolution (e.g. 800   1333) 

intensive image tasks such as object detection is not good, mainly because the feature output of each level is 

single-scale and low-resolution. PVT [33] and PVT-v2 [34] introduce different sizes of the patch embedding 

layer to ensure that the resolution of the feature map decreases successively. 
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3. Methodology 

The framework of our proposed method for face clustering is mainly divided into four parts, including 

feature extraction, big graph partition, hypergraph convolution network and training. We will introduce 

different modules in details in this section. 

3.1. Feature Extraction by ViT 

As we all know, previous face clustering methods for face feature extraction are based on CNN. In this 

subsection, we introduce face features extracted by ViT in detail. Fig.1 also shows the general process of 

feature extraction. Suppose the size of the input each image is        .  ,  and   represent the height, 

width and number of channels of the picture respectively. First, the patch embedding divides each picture 

into patches of fixed size. The patch size is    . Therefore, each image will generate    
  ⁄  patches, which 

can be represented as   and the dimension of each patch is       ,which is represented as  . The 

dimension of the linear projection layer is  , so the dimensions of the input through the linear projection 

layer is still    . In addition, a special character need be added in to    , and the final dimension is  

       . Positional encoding is standard learnable 1  position embeddings. Position encoding can better 

capture the information between each patch. After passing through the positional encoding module, the 

dimension of output is unchanged, and still is        . 

                        (
(   )

√ 
  )     (1) 

 

Fig. 1: The process of the ViT extract face image features. 

 

Fig. 2: The process of the ViT extract face image features. 
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If there's a head, the dimension of the input to       is         , according to Equation 1. The 

dimension of the final output is also        . For multi-head attention, we suppose the number of heads 

is  , so we map the input dimension          ⁄  to      . Finally,   groups of           outputs are 

concated together, and the output dimension is        , according to Equation 2. 

                                       

                    (   
 
    

     
 )       (2) 

We need to reshape the feature of the multi-head attention output into a one-dimensional tensor. It is 

worth noting that since the dimensions of the reshaped features (i.e the one-dimensional tensor) are very 

large, we need to use MLP to narrow the features to get the features we want, according to Equation 3. 

     (       (               ))               (3) 

3.2. Partition Large Graph 

For the global-based method [5], the memory threshold of GPU may be exceeded due to the excessively 

large affinity graph. Although local based methods [4] [35] can reduce the storage burden of GPU through 

local operations on graphics, their dependence on a large number of overlapping subgraphs seriously affects 

the efficiency and accuracy. Therefore, we use Metis [36] to divide the large graph into non-overlapping 

subgraphs. 

We use ViT to extract feature        of face image, and use KNN to construct a large graph   .We 

partition the graph    into   parts by using METIS. Subgraphs are represented as             . The 

advantage of using METIS is better to capture the clustering and community structure of the graph [26]. For 

example, as shown in Fig.2, the graph we constructed with KNN is divided by METIS into four non-

overlapping parts. 

 

Fig. 3: The illustration of the hyperedge convolution layer. 

3.3. Subgraph-Based Hyper Graph Convolution 

The core work of graph convolutional networks is to aggregate the embedded information of neighbor 

nodes, and are widely used to analyse structured data. However, in many practical applications, the 

relationship between objects is high order and goes beyond the pairwise relationship, which a graph be not 

competent to model. So it limits the scalability of GCN for more complex structures, while simply stacking 

GCNS can lead to serious over-smoothing problems, making the effect of related tasks degrade sharply [8]. 

To this end, hypergraph convolution [28] was introduced to encode higher-order relationships between nodes.  

Different from graphs, in a hypergraph, a hyperedge is generally composed of any number of nodes, and 

Hypergraph convolution aggregates node information through node aggregation and hyperedge aggregation 

operations. In this paper, after obtaining the subgraph   by Metis and its corresponding initial features from 

the subgraph, we can construct its hypergraph  . Specifically, for each node   in the subgraph  , k-1 nearest 

neighbors of each node v are calculated separately through node features. These neighbour’s vertices, along 

with the vertex  , form a hyperedge of the hypergraph  .  In this way, the hypergraph   consists of the same 

set of nodes as the graph   and the set of hyperedges constructed by the KNN method on these nodes. We 
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can use the mathematical incidence matrix        to represent a hypergraph, and each entry in the 

incidence matrix   can be defined as: 

     {
                               
                              

         (4) 

Convolution operations can be performed on the constructed hypergraph structure. The reason why the 

features obtained after hypergraph convolution have higher-order correlation characteristics of data is that 

HGCN can convert the node features into hyperedge features, and then aggregate the hyperedge features into 

node features. Specifically, as shown in Fig.3, curves of different colour represent different hyperedges. 

Taking hyperedge    as an example, in the  -th layer of convolution, the features of the four nodes connected 

by the red curve (e.i.   ) are first aggregated as the features of    by multiplying the transpose of the 

incidence matrix       with the input features   
   

        
. The process of this aggregation operation 

can be represented as      
   

 by mathematical expression. Then the features of the three hyperedges 

connected to the node    are re-aggregated into the representation of    by multiplying again by the 

incidence matrix  . It is worth noting that the weight matrix        must be added between the two 

multiplication operations to give different confidences to the hyperedges, i.e.,       
   

. Therefore, through 

the above aggregation operations, vertex    has the relevant features of the other five nodes. In general, the 

hyperedges with larger weights deserve more confidence in such an aggregation. Thus, one step of 

hypergraph convolution is defined as: 

  
     

  (      
   

  
   

)       (5) 

where      represents nonlinear activation function, and   
   

 is the trainable weight matrix in the l-th layer 

convolution. Considering the scale change of   
   

, same as [9], we adopt the following symmetric 

normalization form: 

  
   

     
     

  (  
   ⁄

         
   ⁄

  
   

  
   

)     (6) 

First of all, when l   0, the node features of hypergraph    
   

  are set to equals to the initial feature 

matrix       . When l   , where         is degree matrix of diagonal nodes with      
  

 ∑       
 
   , and        is the degree matrix of the hyperedge, which can be calculated by     

∑    
 
   .  and   play a role of normalization in Equation 6.  

Table 1: Data sets trained and tested on three datasets, MS-Celeb-1M, DeepFashion and IJB-B. 

 datasets instances classes 

Train MS-Celeb-1M 0.57M 8.3k 

Test MS-Celeb-1M 0.58M 8.5k 

Train DeepFashion 25752 3997 

Test DeepFashion 26960 3984 

Train CASIA 0.45M 10k 

Test IJB-B-512 18171 512 

 IJB-B-1024 36575 1024 

 IJB-B-1845 68195 1845 

Table 2: Comparison on MS-Celeb-1M with images count of 58.4k. 

Methods/Metrics       NMI 

K-means[1] 79.21 81.23 - 

DBSCAN[2] 70.63 70.46 -  

HAC[13] 67.93 67.17 - 

ARO[11] 13.6 17 - 

CDP[3] 75.02 78.70 94.69 

DS-GCN[17]        85.66 85.52 97.04 

L-GCN[4] 78.68 84.37 96.12 

GCN-V[5] 87.14 85.82 96.37 

GCN-V+E[5] 87.55 85.94 96.41 

Ours(H-GCN) 90.08 88.64 97.16 
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3.4. Model Training 

For model training, we input the set of partitioned subgraphs, the features set corresponding to the 

subgraphs, constructing the hypergraph function, the HGCN model, the MLP function, the cross-entropy loss 

function, and the ground-truth labels of the edges. In each iteration, we train only one subgraph at each time 

and iteration ends until all subgraphs in the set of subgraphs have been trained. In the HGCN module, we 

input the features corresponding to the subgraph into the function of constructing the hypergraph to obtain 

the hypergraph structure. We input the hypergraph structure and the corresponding node features into the 

HGCN model to obtain the output features of the HGCN. The output features of HGCN are input to the MLP 

function to predict the confidence of nodes with edge connections, and the confidence of nodes without edge 

connections.  Finally, we use the cross-entropy loss to calculate the confidence of the predicted edge and the 

loss of the true label.  Finally, back propagation is used to update the weights of the HGCN and the weights 

of the MLP. The specific details are described in Algorithm 1. 

Table 3: BCubed F-score and NMI performance comparisons on IJB-B dataset, and the best performance is 

reported in bold. 

Methods/Metrics 
IJB-B-512 IJB-B-1024 IJB-B-1845 

          NMI            NMI    NMI 

K-means[1] 61.2 85.8 60.3 86.5 60 86.8 

ARO[11] 76.3 89.8 75.8 90.8 75.5 91.3 

DBSCAN[2] 75.3 84.1 72.5 83.3 69.5 81.4 

Spectral[12] 51.7 78.4 50.8 79.2 51.6 78.5 

AHC[37] 79.5 91.7 79.7 92.5 79.3 92.3 

AP[21] 49.4 85.4 48.4 86.4 47.7 86.9 

DDC[20] 80.2 92.1 80.5 92.6 80 92.9 

L-GCN[4] 83.3 93.6 83.3 94.2 81.4 93.8 

Ours(H-GCN) 85.6 94.5 83.9 94.3 83.7 94.1 

Table 4: Performance on DeepFashion dataset. 

Methods/Metrics                 NMI 

K-means[1]  32.02 53.30 88.91 

ARO[11] 22.54 52.77 88.71 

DBSCAN[2] 25.07 53.23 90.75 

CDP[3] 28.28 57.83 90.93 

HAC[13] 22.54 48.77 90.44 

MeanShift[23] 31.61 56.73 89.29 

L-GCN[4] 30.7 60.13 90.67 

DS-GCN[17] 32.52 57.52 89.54 

GCN-V[5] 33.59 59.41 90.88 

GCN-V+E[5] 38.47 60.06 90.50 

Ours(H-GCN) 39.30 61.69 91.19 

4. Experiment 

4.1. Experiment Settings 

Table 1 shows the details of these datasets. In this experiment, we use MS-Celeb-1M, DeepFashion and 

CASIA datasets for training of face clustering, respectively. the pictures of all our data sets are basically 

consistent with the ViT model, and the pre-training weights of ViT are used. In the training phase, for the 

MS-Celeb-1M data set, in order to construct the KNN affinity graph, we set the direct nearest neighbors's 

amount K = 80. In the process of partitioned graph, we set the number of partitions S = 50. When 

constructing the hypergraph with the features corresponding to the subgraphs, we set   =80. For the HGCN, 

we set 1-layer HGCN in our experiment. For the DeepFashion dataset, we set K=5 to build a KNN affinity 

graph and in the process of graph partition we set the number of partitions S = 5. When constructing the 

hypergraph, we set   =10. Different from MS-Celeb-1M, for HGCN, we use 1-layer HGCN. For the 

CASIA dataset, direct nearest neighbors's amount of constructing the KNN affinity graph and layers of 

HGCN is same as MS-Celeb-1M. In the graph partition stage, we set the number of partitions S = 40. 
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Algorithm 1: Subgraph-base Train for Face Clustering based Hyper-GCN. 

Input: Subgraph Set; Subgraph Feature Set; HGCN model      ; cross-entropy function Loss    ; 

Train iterator number Epochs; construct hypergraph function Chf   ; edges ground-truth label y;  

MLP model MLP   ; 

Output:       and  ; 

1:  for   ,   in Subgraph Set,Subgraph Features Set do 

2:           Construct hypergraph by Chf(  ); 

3:        for each               do 

4:                          ; 

5:                                  ; 

6:             update HGCN weight    and MLP weight   according to the gradient    loss; 

7:        end for 

8:   end for 

9:   return       and  ; 

4.2. Evaluation 

The proposed face clustering approach is compared with supervised face clustering and unsupervised 

face clustering algorithms. We compare the clustering results of the above algorithms on different datasets 

using Pairwise F-score, BCubed F-score and NMI. The comparison results are shown in Table 2, Table 3 and 

Table 4 and the best results are marked in bold. The first four algorithms in Table 2 show the unsupervised 

clustering algorithm, while the last five algorithms show the supervised clustering algorithm. Table 2 shows 

the comparison results of the MS-Celeb-1M dataset, and the state-of-art performance is obtained by 

comparing with four classical unsupervised algorithms and five supervised classical algorithms respectively. 

In the unsupervised clustering algorithm, K-means shows obvious advantages compared with other 

unsupervised clustering algorithms. This is mainly because the K-means algorithm is based on too many 

assumptions that are difficult to satisfy in the real world. The last five in Table 2 are supervised face 

clustering. L-GCN can achieve good performance in supervised face clustering, but this method will produce 

many overlapping subgraphs. GCN-V+E has the highest accuracy compared with other four supervised 

clustering algorithms. However, GCN-V+E needs to input a large image directly into the GCN model during 

training, which is easy to cause out of memory. The method shown in the last row of Table 2 is our proposed 

method H-GCN. The experiments show that H-GCN achieves the best clustering results on MS-Celeb-1M 

dataset. Table 4 shows the results of experiments on the DeepFashion dataset. Our method is more accurate 

than the most advanced methods. The test results of IJB-512, IJB-1024 and IJB-B-1845 are shown in Table 3. 

We only used metrics of BCubed F-score and NMI to evaluate our results, and compared with the best 

method, our method can achieve better results. H-GCN uses ViT to extract image features. Different from 

CNN, the features extracted by ViT have global information, which can improve the clustering quality. At 

the same time, we use METIS to divide the large graph into non-overlapping subgraphs. It solves the training 

problem of out of memory. Finally, we use HGCN instead of GCN to aggregate deeper graph feature 

embeddings and produce good clustering results. 

4.3. Ablation Study 

To verify that the key modules work as expected and the validity of the model structure, and investigate 

some key design choices, we perform ablation experiments on the MS-Celeb-1M. 

In order to better evaluate the role of each sub-module, we carried out end-to-end experiments using 

each sub-module separately. In Table 5, we present the results of the ablation experiment on the MS-Celeb-

1M dataset. We maintain the consistency of HGCN model or GCN model, and use ViT and CNN 

respectively to extract features. From the experimental data, the feature extracted by ViT has higher accuracy. 

At the same time, we use the same feature extractor VIT or CNN, respectively using HGCN model and GCN 

to aggregate node features. Using HGCN model to cluster faces can achieve better clustering effect. 
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Table 5: Compatibility analysis on MS-Celeb-1M. 

Dataset MS-Celeb-1M 

Methods /Metrics                     NMI 

ViT HGCN 90.08 88.64 97.16 

CNN HGCN 88.80 86.59 96.34 

ViT GCN 83.66 82.46 96.01 

CNN GCN 81.73 79.47 95.56 

5. Conclusion 

HGCN have proven to be useful tool in many pioneer works. In this paper, we try to improve the 

performance of face clustering, and propose a novel supervised face clustering framework. The proposed 

method is based on HGCN to better aggregate the feature embedding of deeper nodes and remarkably 

improves accuracy. At the same time, in order to eliminate the limitation of being unable to train due to 

memory overflow on the large graph, we use METIS to partition the large graph as subgraphs. We use 

HGCN to learn the deeper information from these subgraphs to do clustering. Besides, in order to further 

improve the performance of face clustering, we use the most advanced feature extractor (ViT) to extract face 

features. The effectiveness of the proposed H-GCN clustering approach is tested on benchmark datasets. 

Comprehensive experiments indicate that our method is superior to other popular clustering algorithms on 

large-scale face datasets. 
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