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Abstract. A self-learning target pose estimation method based on RGBD images is proposed to improve 
the robustness and applicability of 6DoF object pose estimation for augmented reality assembly guidance. 
The method is built on a self-supervised approach, using a dataset annotation module to create pseudo-labels 
for actual data and fine-tune the posture estimate model to accommodate changes in the realistic data 
distribution. The dataset annotation module uses an Iterative Closest Point (ICP) to solve for the target pose 
of a single frame and SLAM to locate the camera pose to infer the global pose of the target, in addition to the 
local pose in various camera spaces. The pose estimation model uses target detection techniques to coarsely 
segment the image and a dense fusion network to extract multisource features, predicting the target’s pose 
and semantic segmentation results. The labeling rate of the dataset in real scenarios is 36 frames per minute, 
and the AUC of 6DoF pose estimation is 3.72% higher than that of existing algorithms. According to 
experimental findings, the self-learning pose estimate method can well adjust to new environments. 

Keywords: 6DoF pose estimation, data annotation, deep learning, feature fusion.  

1. Introduction 
Six-degree-of-freedom (6DoF) object pose estimation is the basis of real-world applications such as 

robotic grasping and manipulation [1], autonomous driving [2], and augmented reality [3]. Most pose 
estimation methods perform well when dealing with objects with different shapes and textures, sensor noise, 
and variable illumination conditions. However, it is difficult to maintain an algorithm’s robustness and real-
time performance in highly dynamic augmented reality applications. 

Traditional techniques use templates designed artificially to solve the 6DoF pose of objects [4], and are 
only suitable for scenes with apparent features and no dynamic objects. The deep learning convolutional 
neural network (CNN) approach extracts the sophisticated semantic properties of images by learning a vast 
quantity of label data. Its accuracy is far beyond that of the traditional artificial feature extraction method, 
and it provides a new idea for target pose estimation. YOLO-6D [5] uses RGB data as input, predicts the 
target’s 2D keypoints, and uses a Perspective-n-Point (PnP) algorithm to complete 6DoF pose estimation. 
However, RGB data lack spatial geometric constraints, and the predicted keypoint locations may overlap. He 
et al. [6] proposed a method using a PVN3D network to extract target geometry information from a depth 
image, densely fuse texture and depth multisource features to predict target 3D keypoints, and match them 
with corresponding 3D model keypoints to obtain pose information. However, the keypoint filtering strategy 
affects pose prediction accuracy. Wang et al. [7] proposed the use of multisource fusion features by 
DenseFusion for end-to-end target position prediction, but the algorithm requires complex semantic 
segmentation training and preprocessing. Most of the existing methods is trained with full supervision, and 
its performance is closely related to the quality of the dataset [8]. When there is a significant difference 
between the distribution of the training set and the actual scene data, prediction ability decreases 
dramatically, and it is complicated to label the realistic pose dataset [9]. Self-supervised learning [10] uses 
assisted tasks to analyze the information of the dataset itself, automatically builds data pseudo-labels, and 
reduces labor consumption. It has the potential to replace fully supervised learning in characterizing learning. 
Mitash et al. [11] arranged multiple cameras to complete semantics segmentation and point cloud fusion of 
multiple perspectives, automatically generate posture data labels, and supervise model training. However, the 
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method requires real-time calibration of the relative postures of multiple cameras. Ruan et al. [12] analyzed 
the motion constraints of continuous data frames and supervised the predicted posture results according to 
the epipolar geometry constraint between feature pairs. However, this scene is only suitable for camera 
posture tracking, and not the 6DoF object posture-solving task.  

This paper presents a self-learning pose estimation method based on RGBD data, which uses a dataset 
construction method as an assistive technology to automatically build data pseudo-labels and optimize the 
posture estimation model. The self-learning pose estimate method can solve the complex problems of data 
annotation and pose solving in real scenarios, thus improving the accuracy and robustness of the target pose 
estimation algorithm in an AR assembly environment. 

2. System Overview 
Fig. 1 shows the workflow of the algorithm. The pose estimation method uses a self-supervised training 

strategy in the offline phase. The actual data labeling work is used as an auxiliary task to automatically 
construct pseudo-labels and provide data for the pose estimation model. The data annotation module uses a 
pretrained pose estimation model to predict the initial label values of the actual data, and a dataset 
construction method to reconstruct the predicted labels to optimally generate pseudo-labels. The 6DoF pose 
estimation module uses the actual data and pseudo-labels to fine-tune the pose estimation model parameters, 
update the extracted RGBD fusion features, and predict the data’s pose and semantic segmentation results. 
Self-learning posture estimation can automatically label actual data, expand datasets, fine-tune model 
parameters, and continuously learn to adapt to the data distribution of new scenarios. The assembly guidance 
animation in the AR environment is displayed in the online phase based on the target position result, and the 
visual assembly guide is realized.  
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Fig. 1: Workflow of the algorithm. 

2.1. Real data annotation module 
The current semi-automated data annotation method for arranging and calibrating multiple sensors is 

time-consuming. Automatic positional localization replaces manual calibration for multiple sensors by 
combining a single camera with Simultaneous Localization and Mapping (SLAM) [13]. By calculating the 
target's pose in a single frame, with SLAM to locate the camera pose in different frames, the global pose of 
the target and the local pose labels in different frames can be inferred.  

The real data annotation method takes the target local pose Rtc and the semantic segmentation mask from 
the prediction results of the pretrained pose estimation module as initial values and uses the Iterative Closest 
Point (ICP) point cloud registration algorithm to calculate the pose transformation relationship between the 
target and the corresponding 3D model.  

Fig. 2 shows the data annotation process. The method takes the initial values of the local pose Rtc and the 
segmentation mask predicted from a single frame (corresponding to camera pose Rtc2w), and uses the 3D 
model as the alignment target for ICP optimization to obtain the optimized local pose Rtc_icp, 

_ ( )c icp cRt ICP Rt=                                                                     (1) 

Considering the relative vagueness of the mask information mask and the corresponding point cloud 
information, it is impossible to determine the optimization results’ accuracy. The semantic segmentation 
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results and corresponding camera poses are used to construct the whole multiview point cloud fusion 
information as the alignment target. Then, the optimized global posture Rtw_icp is obtained after the second 
ICP optimization,  

_ 2 _( * )w icp c w c icpRt ICP Rt Rt=                                                             (2) 

The positional transformation relationship between the global pose Rtw_icp and local pose Rtci is solved 
according to the camera pose Rti of the different frames, 

1
_*ci i w icpRt Rt Rt−=                                                                     (3) 

Finally, the image's local pose, mask, and bounding box information are automatically labeled according 
to the 3D model and local pose information.  
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Fig. 2: Real data labeling process. 

To initialize the model parameters in the pose estimation module requires the use of physical simulation 
technology to build a dataset training model for the first time, and to subsequently fine-tune the model using 
actual data and pseudo-labeling. 

2.2. Target pose estimation module 
The target pose estimation module is based on DenseFusion [7]. A pose estimation model, 6DPoseCNN, 

is constructed to meet the model’s need for complex semantic segmentation preprocessing and a fixed input 
scale. The 6DPoseCNN model improves image data rough segmentation preprocessing, variable point cloud 
feature extraction, and semantic segmentation prediction. 

(1) Model structure 
Fig. 3 shows the structure of 6DPoseCNN. The network model includes target detection, feature 

extraction, posture prediction, and a posture optimization module.  
Data segmentation preprocessing can filter redundant background information to make the model focus 

on extracting target features. The annotation information of the target detection box is more accessible than 
the semantic segmentation annotation information. Therefore, the target detection module (YOLO [14]) 
replaces the semantic segmentation module for data preprocessing to solve the problem of complex 
annotation of the semantic segmentation data.  

The scale of the input data in the feature extraction module varies due to the range of the target detection 
results, and RandLA-Net [15] can extract geometric features from the input point cloud at various scales. 
Because global features in the feature fusion module tend to introduce background noise and interfere with 
the extraction of target features, only local features of target geometric information are extracted, using 
multilayer convolution. Batch Norm is added after the convolution layer to accelerate network training and 
prevent gradient explosion in backpropagation. However, the input data scale is inconsistent, and the batch 
scale can only be 1. A smaller batch scale increases the error rate [16], so Group Norm, which is not related 
to the batch scale, is used as the batch operation.  

There is some background information in the target detection module’s pre-segmentation results, so it is 
necessary to add semantic segmentation subtasks in the pose estimation model to eliminate background 
interference. Therefore, the semantic segmentation subtasks Ms are constructed using multilayer convolution 
to predict the category information of each pixel.  
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Fig. 3: Overview of pose estimation model. 

 (2) Loss function 
Compared to the single-task supervision of DenseFusion, 6DPoseCNN adds a semantic segmentation 

subtask and requires multitask supervised training. To synchronously supervise the pose prediction and 
semantic segmentation sub-task, a 6DPoseCNN multitask loss function L is constructed,  

1 2L w Lct w Ls= +                                                                  (4) 

where Lct is the loss function of the pose estimation task, Ls is the loss function of semantic segmentation 
tasks, and w1 and w2 are the weights of the subtasks, where we take w1=w2=1.0 [6,20].  

To supervise the training of the positional estimation subtask, we use the DenseFusion loss function Lct, 
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where M denotes the point cloud of the category obj model that has been downsampled, N is the number of 
pixels belonging to category obj in the image, R and t denote the label poses, Ri and ti denote the predicted 
poses of the corresponding pixel positions, ci is the confidence level of the corresponding pixel prediction, 
and w is a hyperparameter.  

To supervise the training of the semantic segmentation subtask, the semantic segmentation loss function 
Ls uses a standard multi-category loss function, Focal Loss [17],  

(1 ) log( )obj objLs p pγ= − −                                                   (6) 

where p is the probability of the pixel prediction category obj, and γ is a hyperparameter. 

3. Experimental Results and Analysis 
In a pose estimation experiment, the RGBD camera in the Microsoft HoloLens2 helmet was used to 

collect actual scene data, where the resolutions of the depth image and RGB image were  320 × 288 and 760 
× 428, respectively, and the resolution after alignment with the depth image was 320 × 288. An NVIDIA 
Quadro K2200 (4G) GPU was used for accelerated training of the deep learning network. The model was 
built using the deep learning framework PyTorch 1.8. The Adam optimizer was used, the batch size was 1, 
and the iteration cycle (Epoch) was 60.. 

3.1. Self-learning process performance evaluation 
To evaluate the impact of the self-learning process on model performance, the experiment had three 

stages, collecting 389, 415, and 429 frames of data, with differences in light intensity. The data in these three 
stages were used to conduct two self-learning tests for changing scenes. The first self-learning process used 
all the data from the first stage to train the 6DPoseCNN model, while 2/3 of the data from the second stage 
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were randomly selected for fine-tuning, and the remaining 1/3 were used for testing. The second self-
learning process used the data from the first and second stages to train the 6DPoseCNN model, randomly 
selecting 2/3 of the data from the third stage for fine-tuning, and the remaining 1/3 of the data for testing. 
The accuracy threshold curve with a maximum threshold of 0.1 m was drawn [18]. The area under the curve 
(AUC) was used as the evaluation criterion of pose estimation, whose increased significance indicated a 
better pose estimation effect. The impact of data fine-tuning on the performance of the pose estimation 
model in the self-learning process is shown in Table 1. “(No) fine-tuning” indicates whether fine-tuning data 
were used to optimize the model. It can be seen that the performance after fine-tuning was better than before. 
The self-learning process of the fine-tuning model could improve its adaptability to new scenes. 

Table 1: Effect of data fine-tuning in the self-learning process on the performance of the pose estimation model. 

Process Data volume Training set Test set AUC 
Initialize model 389 389 -- -- 

First self-learning process 
(no fine-tuning) 

415 -- 139 87.30 

First self-learning process 
(fine-tuning) 

415 276 139 95.76 

Second self-learning process 
(no fine-tuning) 

429 -- 143 87.98 

Second self-learning process 
(fine-tuning) 

429 286 143 95.75 

3.2. Dataset construction performance evaluation 
The construction of the actual scene dataset has seven stages: data collection, target detection box 

annotation, initial pose prediction, and semantic segmentation, manual selection, ICP local optimization, 
point cloud fusion and ICP global optimization, and positional solution for each viewpoint, where the first 
four involve data acquisition and preprocessing. Table 2 shows the time consumption of each execution 
phase, based on 400 actual data annotations. The manual data annotation method took 29.51 min, and the 
annotation rate was 13 frames per minute, where target detection box annotation (manual annotation) took 
the most time. To further improve the data annotation rate, the YOLO model was used instead of manual 
detection frame annotation to predict the results. Data annotation based on the target detection model took 
11.01 minutes. The annotation speed was 36 frames per minute, which was 2.6 times greater than manual 
data annotation.  

Table 2: Labeling process and time consumed/min 

 Process 
Manual data annotation 

method 
Data annotation based on target 

detection 
1 Data collection 2.00 2.00 
2 Target detection box annotation 20.00 2.00 

3 
Initial pose prediction and semantic 

segmentation 
4.00 4.00 

4 Manual selection 0.50 0.00 
5 ICP local optimization 0.01 0.01 

6 
Point cloud fusion and ICP global 

optimization 
2.00 2.00 

7 Positional solution for each viewpoint 1.00 1.00 
-- Total time 29.51 11.01 

 
To compare the effects of target detection box annotation methods on data annotation, different detection 

criteria were used to evaluate the similarity of the two label results. Using Intersection over Union (IOU) [14] 
to evaluate the effect of target detection box annotation, the similarity of such labels reached 97.89%; using 
AUC to evaluate the effect of pose annotation, the similarity reached 98.13%. The experimental data show 
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that target detection-based data annotation had excellent annotation results and a fast annotation rate, and 
could quickly provide label data for self-supervised training. 

3.3. Pose estimation model performance evaluation 
The data of pose estimation model evaluation experiment came from HoloLens2 to collect the RGBD 

data of the actual scene and used the dataset construction method to generate the corresponding real scene 
dataset. The dataset contained 1233 frames, with 986 frames for training, and 247 for testing. The loss 
convergence curve of the 6DPoseCNN training process is shown in Fig. 4. The training process has two 
stages: (1) prediction, where the posture optimization module does not participate in training and prediction; 
(2) pose optimization, where the posture optimization module is trained and the other modules are frozen. 
Fig. 4 can be seen that the pose optimization process saw rapid convergence of the loss curve after 
initialization. The Average Distance of Model Points (ADD) was used to evaluate pose error. If the ADD 
was < 2 cm, the pose estimation was correct [7]. The accuracy of 6DPoseCNN pose prediction was 98.8%. 
The pose prediction results of some data in Fig. 5 show that the model point cloud overlapped well with the 
target point cloud.  

 
Fig. 4: Loss convergence curve of 6DPoseCNN. 

Results

Real 
data

 
Fig. 5: Part of data, with corresponding pose prediction results. 

To further evaluate the performance of pose estimation algorithms, the ADD less than 2 cm and AUC are 
used as the evaluation criteria for pose estimation of different algorithms. The comparison results are shown 
in Fig. 6 and Table 3, from which it can be seen that the 6DPoseCNN model had the best comprehensive 
effect, with prediction pose error superior to that of other algorithms under different thresholds. Compared 
with the DenseFusion model, the prediction accuracy AUC was increased by 3.72%. The experimental 
results of PVNet [20] were inferior to those of the pose prediction model with RGBD as input because it only 
used RGB as input, which lacks the depth geometry information, and the predicted 2D keypoints tend to 
overlap. As a pose estimation model with RGBD input, MaskedFusion [21] introduced geometric depth data 
and used this as an expanded dimension of texture data features without considering the influence of 
geometric feature information. PVN3D [6] used different CNNs to analyze texture and geometric features 
and used a multisource feature fusion mechanism to extract the target's keypoints and solve the pose-
matching relationship with the keypoints of the 3D model. However, the keypoint extraction strategy 
affected the performance of the algorithm. DenseFusion [7] used the fusion features of texture and geometry 
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through a multisource fusion mechanism to directly regress the target poses, and an iterative module to 
optimize the prediction results. However, its fixed input was prone to missing key information during 
downsampling. The extraction of global features was prone to introducing background noise. The pose-
prediction results relied heavily on the data preprocessing effect of semantic segmentation, and thus failed to 
obtain higher-quality results.  

Table 3: Accuracy of pose estimation with different algorithms. 

 PVNet [20] MaskedFusion [21] PVN3D [6] DenseFusion [7] Ours 
ADD (< 2 cm) 53.84 86.63 74.09 97.16 98.80 

AUC 77.53 86.07 84.94 90.91 94.63 

 
Fig. 6: Accuracy of posture estimation with different algorithms. 

3.4. Enhanced assembly effect display for typical scenarios 
With the AGILEX SCOUT MINI robot as the assembly target, an AR-based assembly assistant system 

was developed. The system used a Microsoft HeloLens2 helmet as an enhanced display device and 
HelmetSceneGraph (HSG) for three-dimensional graphics rendering and as an image processing engine. 
During the experiment, the robot was kept motionless, and the Hololens2 helmet was moved to obtain the 
display effect of assembly guidance information from different viewpoints and distances. The experimental 
results are shown in Fig. 7, where Fig. 7a shows the target robot, according to which the dataset was 
constructed, the pose estimation model was trained, and the poses in the augmented reality space were 
predicted. Fig. 7b shows the target’s pose-estimation results, and overlays the target assembly information 
based on the target’s 6DoF poses. The HoloLens2 was moved to change its viewing angle with the target to 
obtain the registration results of the guidance information under different viewing angles (as shown in Figs. 
7c and 7d). The diagram shows that the posture estimation algorithm achieved good pose estimation results. 
Figs. 7e and 7f show the guidance screen of the disassembly process, which is marked with dynamic 
guidance information to determine the position of the tires and screws of the parts to be disassembled.  

a) b) c)

d) e) f)  
Fig. 7: Posture prediction results in augmented reality scenes. 
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4. Conclusion 

In this paper, we presented a pose estimation method for an AR mechanical assembly assistant system. 
The method used a self-supervised training method, combined with a dataset construction method to quickly 
annotate data, in addition to using new data to optimize 6DPoseCNN to adapt to changes in the scene data 
distribution, for achieving the goal of continuous learning. The introduction of SLAM technology in the 
dataset construction phase overcomes the problem of multi-sensor placement and mutual calibration. We 
used 6DPoseCNN to solve the problem of assembly environment complexity and posture prediction 
accuracy. Experimental results showed that the self-learning pose estimation method had better adaptability 
to changing scenes, the AUC could reach 94.63% on real datasets, and the method could realize better 
accuracy in the disassembly process based on the AR assistant system. Because the dataset construction 
method needs to be analyzed using a 3D target model, this poses estimation method is limited to scenes with 
a 3D target model. 
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