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Abstract. When verifying software properties by using automatic formal verification methods, loop 
structures require manually provided loop invariants to enable automatic verification. To solve the difficulty 
of manually writing loop invariants in automated verification, we propose a novel approach to abstract the 
behavior of the loop structure. Through this abstraction method, the trends and ranges of variables in loop 
structures can be obtained. The verifier utilizes the abstracted information to automatically verify whether 
integer overflow vulnerabilities exist in the program. We implemented an automated formal verification tool, 
VeriOover, based on this method for detecting integer overflow in C language programs. The tool parses input 
programs into abstract syntax trees, converts the nondeterministic values into symbolic variables, and leverages 
symbolic execution and loop abstraction for program state analysis. VeriOover generates program assertions 
based on each program state to determine if an integer overflow exists in the program at that time. VeriOover 
is implemented and publicly available as an open-source project at https://github.com/Rw1nd/VeriOover. 
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1. Introduction 
As a general-purpose computer programming language, C lacks a security protection mechanism. 

Therefore, there are various types of vulnerabilities in C programs. The integer overflow is one of the software 
vulnerabilities [1]. Integer variables exist in a fixed range interval with limited computer memory [2]. An 
integer overflow occurs when the result of an arithmetic operation or an intermediate result exceeds the range 
of the integer type at runtime. Hence the program can produce an issue where the result of the computation 
does not match the expected result. This issue can threaten the security of the entire software. The attacker can 
trigger the overflow by constructing a particular input that makes the software fail to perform properly. 
Alternatively, the attacker could hijack the software execution logic or execute other malicious behavior by 
exploiting the integer overflow vulnerability [3]. 

Currently, the software vulnerability detection methods include software testing [4] and static analysis [5]. 
For software testing, fuzzing is one of the most popular methods [6]. Fuzzing utilizes the initial seeds as test 
samples, then mutates these seeds in the subsequent testing process to generate new test samples, and repeats 
the mutation and testing process to detect vulnerabilities. The most commonly used tools for fuzzy testing are 
AFL++ [7], VUzzer [8], etc. Generally, fuzzy testing is challenging to cover all tested code, and no guarantee 
that tested software is free of vulnerabilities. Static analysis is another software vulnerability analysis method. 
Through symbolic execution [9], taint analysis [10], program slicing [11] and other methods, static analysis 
methods can cover all of the code and evaluate the properties of a program. And it is capable of detecting 
software vulnerabilities through data flow analysis and pointing analysis [12] without executing the program. 
Some commonly used static analysis tools are SVF [13], CBMC [14], etc. However, static analysis may 
generate false negatives or false positives in the detection of vulnerabilities. 

Formal verification is an alternative approach to ensuring program safety, whereby program properties are 
mathematically proven through proof codes [15]. However, this method requires a significant amount of 
manual effort in writing proof code. To achieve full automation, it is currently necessary to manually specify 
loop invariants when verifying programs with loop structures. Moreover, due to the large number of program 
states that need to be proven in automatic formal verification, some tools, like Frama-C [16] and VeriFuzz 

                                                           
+  Corresponding author. 
   E-mail address: quhaipeng@ouc.edu.cn. 

ISBN: 978-981-18-7950-0

doi: 10.18178/wcse.2023.06.003

13



  
[17], are unable to produce proof results within an acceptable amount of time. In this paper, we propose a novel 
loop analysis technique that automates the verification of loop properties and leverages them to detect integer 
overflow vulnerabilities in programs. The contributions of this paper are as follows: 

• We propose a novel method for abstracting the properties of loop structures. This method is capable of 
automatically abstracting the properties of variables in loop structures, which enables the detection of 
integer overflow vulnerabilities based on these properties and thus mitigates the difficulty in verifying 
loop structures during automated verification. 

• We implement the tool VeriOover based on the idea of automatic formal verification. It combines 
symbolic execution and our loop abstraction methods to detect integer overflows in the C language. 

• A formal verification approach is used to automatically detect existing programs and improve the 
credibility of the detection based on static analysis. 

The following section is the design overview of VeriOover. Section 3 describes the method of the loop 
abstraction. Section 4 describes the evaluation of the method. Section 5 is the conclusion. 

2. Design Overview 
VeriOover verifier tool is depicted in Fig. 1. VeriOover accepts a C source code file for verification. 

 

Fig. 1: Overview of VeriOover verifier. 

The parser in the verifier first converts the input code into an abstract syntax tree. Then it uses static 
analysis methods to mark the symbolic values and their positions in the abstract syntax tree. If the symbolic 
value appears in the loop condition, the parser will provide the analyzed abstract syntax tree to the loop 
analyzer. The loop analyzer traverses each statement in the loop body and gradually abstracts the variation 
trend for each symbolic value based on the type of statement and the current abstraction context. 

The verifier will generate logical assertions based on the variable information abstracted from the loop and 
the definition of integer overflow. Then the logical assertions are then fed into an SMT solver [18] for 
automated solving. If the assertions can not be satisfied, the integer overflow exists.  Conversely, the program 
does not have an integer overflow vulnerability if the logical formulas can be satisfied. If the symbolic value 
is not in the loop condition, then we use the symbolic execution method to analyze the code. When symbolic 
execution does not produce a result within the specified time, VeriOover reanalyzes the program using the 
loop analyzer. 

2.1. Symbolic execution 
With symbolic execution, the input values of a program can be treated as symbols, and the program 

properties can be analyzed by constructing logical formulas. KLEE [19], angr [20], S2E [21] are currently 
popular symbolic execution tools. However, there are some challenges to symbolic execution. When analysing 
the loop, symbolic execution analyses all feasible paths. If there is no clear boundary in the loop condition, 
symbolic execution will generate an infinite number of states. This causes the symbolic execution tool to fail 
to continue with the analysis. 

This paper uses a new loop abstraction method to analyze the range of symbolic variables in loops to avoid 
the path explosion problem that arises when analyzing loop structures in symbolic execution. We use static 
analysis to record all symbolic variables and their position in the programs. If the symbolic variable exists in 

14



  
the loop condition, then the loop analyzer will analyze the variables leveraging the loop abstraction method. 
In this paper, we employ this approach to abstract all symbolic variables and obtain logical constraints for the 
range of variables. We can determine whether the integer overflow exists by solving the logical formula. 

2.2. Variable constraints 
Since different systems define the range of shaping types differently, the integer types discussed in this 

paper are all 32-bit and are divided into signed and unsigned. Let 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 denote the program to be analyzed, 
where 𝑣𝑣𝑠𝑠 represents signed integer type variables, 𝑣𝑣𝑢𝑢 represents unsigned integer type variables, σ represents 
the current state of the program during execution, Σ represents the set of all states of program 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, and 𝑉𝑉(σ) 
represents all variables in set 𝜎𝜎. For signed integer variables with all states in the program, there is the theorem 
𝑄𝑄𝑠𝑠𝑠𝑠 that holds: 

    𝑄𝑄𝑠𝑠𝑠𝑠: ∀𝑣𝑣𝑠𝑠 ∈ 𝑉𝑉(σ).−(231) ≤ σ(𝑣𝑣𝑠𝑠) ≤ 231 − 1                                                    (1) 

For unsigned integer variables in any state of the program, there is the theorem 𝑄𝑄𝑢𝑢𝑠𝑠 that holds.: 

Quo: ∀vu ∈ V(σ). 0 ≤ σ(vu) ≤ 232 − 1                                                       (2) 

Then the integer overflow in the program can be defined formally as the theorem 𝑃𝑃𝑠𝑠: 

𝑃𝑃𝑠𝑠: ∃σ′ ∈Σ.  σ′  ⊨ (∃𝑣𝑣𝑠𝑠 ∈ 𝑉𝑉(σ′).  ¬𝑄𝑄𝑠𝑠𝑠𝑠) ∨ (∃𝑣𝑣𝑢𝑢 ∈ 𝑉𝑉(σ′).  ¬𝑄𝑄𝑢𝑢𝑠𝑠)                        (3) 

where the form ∃𝑥𝑥.𝑝𝑝 denotes the assertion 𝑝𝑝 is satisfiable for some value of 𝑥𝑥. The meaning of 𝑃𝑃𝑠𝑠 is that for 
all states of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, if there exists a state σ′ in which there exists a variable 𝑣𝑣𝑠𝑠 or 𝑣𝑣𝑢𝑢 with an assignment that 
makes ¬𝑄𝑄𝑠𝑠𝑠𝑠 or ¬𝑄𝑄𝑢𝑢𝑠𝑠 true, then integer overflow occurs.  

3. Loop Abstraction 
We describe how to use loop abstraction techniques to abstract variables in a loop, how to obtain the 

program state after the loop, and how to use its results for integer overflow verification. 

3.1. Abstraction of arithmetic expressions 
Arithmetic expressions are one of useful expressions in programs. There are many types of arithmetic 

expressions, and the frequent arithmetic operations in C are addition, subtraction, multiplication, division, and 
modulo operations. Here we only consider arithmetic operations that may produce integer overflows, such as 
addition, subtraction, and multiplication. The primary purpose of arithmetic expression abstraction is to 
analyze the monotonicity of different variables and to analyze the range of different variables more precisely. 

 
Fig. 2: Variable monotonicity analysis. 

Fig. 2 represents a loop in which the variables x and y in the state σ are concrete values, and the variable 
z is a symbolic value. 𝑀𝑀𝑃𝑃𝑀𝑀 indicates the set of recorded variable monotonicity, and 𝐸𝐸 means that the variable 
monotonicity is not analyzed. 

Suppose the concrete variable adds or subtracts a constant value. In that case, the trend of this variable can 
be either monotonically increasing(𝑈𝑈) or monotonically decreasing(𝐷𝐷) based on the constant value and the 
context. If a symbolic value is added to or subtracted from a constant value, then the trend of the variable can 
be interpreted in the same way. If two variables are calculated, the trend is judged based on the context and the 
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analyzed trend. If the expression is too complex to be analyzed by the expression abstraction component, then 
the variable change range is judged as UNKNOW. 

3.2. IF conditional abstraction 
The primary purpose of conditional expression abstraction is to analyze the code logic in the two cases. 

Nested loops are possible in the IF expression, and the condition value directly affects the values of the 
variables in the loop. Consequently, it is desired that the analysis of IF expressions is separate. For IF 
expressions, we consider both cases where the branching condition is true and false.  Firstly, we abstract the 
conditional constraints for both cases into logical formulas. And then, we consider adding the abstracted logical 
formulas to the set of variable constraints. Finally, the analyzed results are submitted to the WHILE conditional 
analysis component.  

 
Fig. 3: Abstract results obtained by different expressions. 

3.3. WHILE conditional abstraction 
There are three purposes of the loop condition analysis. First, determine the possible times of loop 

executions based on the program state, the monotonicity of the variables and the loop condition expressions. 
Second, determine if there exists a variable that satisfies theorem (3), according to the monotonicity of the 
variables, the arithmetic expression in the loop body and the times of possible executions of the loop body. 
Third, form a logic assertion based on the previous conditional expression constraints, loop condition 
constraints and arithmetic expression constraints. 

As shown in Fig. 3, we can obtain the following analytical results from the previous analysis: At position 
1, it is clear that the variable x is a symbolic value through the Parser. Furthermore, this variable is in the loop 
condition after the analysis of Parser. The IF condition could be analyzed at position 2. The conditional 
expression is abstracted to obtain two constraints with the condition 𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 and 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡. Position 3 is the loop in 
the 𝑡𝑡𝑡𝑡𝑃𝑃𝑡𝑡 branch of IF. The loop condition is abstracted and added to the corresponding constraint. Position 4 
is an arithmetic expression. Depending on the content of this expression, the loop analyzer can update the 
program state and analyze the monotonicity of the variables. 

The WHILE conditional abstraction component adopts the strategy of maximizing the loop count and 
calculates the loop count based on the monotonicity of the variables in the loop condition. If there is no upper 
or lower limit for the symbolic value in the loop condition, it is assumed that the loop will repeat as many 
times as possible. Moreover, based on the times of loop execution, the possible maximum or minimum values 
of each variable can be calculated and added to the constraints. Subsequently, the loop analyzer will compose 
all the previous constraints into a complete assertion, which is delivered to the Z3 SMT solver for solving. If 
the maximum value exists and is out of the range of the type, the verifier will assume that there is an integer 
overflow vulnerability in the program 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, and vice versa is safe. 

4. Evaluation 
To verify the effectiveness of the proposed VeriOover, we use four datasets from SV-benchmarks: 

signedintegeroverflow-regression, termination-crafted, termination-crafted-lit, and termination-numeric. SV-
benchmarks are the datasets used in competition on software verification. It contains the datasets for integer 
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overflow. A C file in the datasets corresponds to a YML file. The YML file describes the properties of the 
program. We select the programs that contain the no-overflow property in the YML file as test input. This 
paper compares five tools, KLEE [19], VeriFuzz [17], Frama-C [16], CBMC [14], and 2LS [22], with 
VeriOover for automated formal verification of programs to detect integer overflow vulnerabilities. We 
specifies that the verification time for a single program must not exceed 60 seconds, and if the verification task 
can not be completed within the specified time, it will be considered as unable to detect the program and the 
result will be recorded as "Unknown". 

As shown in Fig. 4, approximately 90.04% of the programs in the test set could be verified correctly by 
VeriOover. The complicated process of calculating variables in the test program led to judgment errors. The 
unknown result is mainly due to the presence of memory allocation functions such as malloc, which VeriOover 
can not analyze, or the program is overly complex and exceeding the abstraction capacity of VeriOover. 
Experiment results show that within the same time limit, VeriOover can correctly verify the most number of 
programs, has the fewest number of programs that can not be verified, and the number of programs that are 
correctly verified far exceeds that of other tools. 

 
Fig. 4: verifier results comparison. 

In the runtime testing for the verifier, we specified a maximum time limit of 60 seconds for each individual 
task for every tool. As shown in Table 1, the Verioover tool has an average runtime of 2.25 seconds, which is 
lower than the runtimes of Frama-c and VeriFuzz, which are 11.15 seconds and 4.04 seconds, respectively. 
VeriOover outperforms both KLEE and Frama-C in terms of maximum and minimum time consumption for a 
single verification task. Compared to the CBMC, 2LS, and KLEE tools, while VeriOover has a higher average 
runtime, it is capable of performing verification on a wider range of tasks. And VeriOover is implemented 
using the Python language, while CBMC and 2LS are developed using C/C++, which gives them some speed 
advantage at the language level.  

Table 1:  Verifier time consumption comparison  

Tool Average Maximum Minimum 
VeriOover 2.25s 12.85s 0.30s 

KLEE 1.72s 65.52 030s 
VeriFuzz 4.04s 6.00s 3.68s 
Frama-C 11.15s 50.45s 1.24s 
CBMC 0.20s 3.80s 0.07s 

2LS 0.59s 33.18s 0.05s 

5. Conclusion 
This paper presents a new loop abstraction method for detecting integer overflow vulnerabilities, which 

aims to alleviate the difficulty of analyzing loop structures in automatic formal verification. In this paper, based 
on the loop abstraction and symbolic execution methods, we first abstract the ranges of variables. Subsequently, 
assertions are generated based on all the abstracted expressions and the program properties.  Finally, the SMT 
solver is considered for the verification of the properties of the program.  
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VeriOover can detect integer overflow vulnerabilities in C programs with the idea of formal verification. 

Automated verification provides a trade-off between reliability and usability than using interactive theorem 
prover such as Coq, Isabelle, etc. Compared to traditional software testing methods, the detection method based 
on formal verification can provide higher confidence and security. VeriOover is publicly available at 
https://github.com/Rw1nd/VeriOover. 
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