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Abstract. In this paper, we propose a compressed sensing image de-noising algorithm based on L1-L2 

norm regularization. After the image is decomposed by the total variation spectral framework, L1 norm 

regularization is performed on the texture image, and L2 norm regularization is performed on the contour 

image, then the alternating direction method of multipliers (ADMM) is used for solution. The results of 

numerical experiment show that the proposed algorithm obtains higher peak signal-to-noise ratio (PSNR) and 

structural similarity (SSIM) than the compared compressed sensing algorithm and the total variation 

algorithm, and can effectively maintain the contour information and texture information of the image when 

de-noising. 
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1. Introduction 

Image noise is a problem in the field of image processing, and the noisy image will bring great 

difficulties to the feature extraction of the in the later stage[1].Therefore, the effective image de-noising has 

been the focus of attention. The purpose of image de-noising is to recover unknown original picture from the 

noisy image .In 1992, Osher and Fatemi proposed a classical total variation de-noising model [2]. However, 

the traditional total variation algorithm will misjudge the noise as the edge of the image, leading to staircase 

effect, which makes the quality of de-noised image unsatisfactory. On the other hand, the improved 

compressed sensing algorithm[3] based on the traditional total variation model can quickly reconstruct and 

de-noise the image, but the texture and structural features of the image are not taken into account. 

In order to overcome this difficulty, based on the compressed sensing algorithm of reference [4], we 

propose a compressed sensing de-noising algorithm based on L1-L2 regularization. First, the noisy image is 

decomposed by the spectral framework to obtain a contour image with a small amount of noise and a texture 

image with a lot of noise. Since the contour image is mainly a smooth region, and is low-frequency 

information; while the texture image mainly contains details and noise, and is a high-frequency region [5], 

therefore, inspired by the reference[6], different weighting methods are used for the contour image and the 

texture image according to the structural features of the image. The L2 weighting method is adopted for the 

contour image with a small amount of noise, and the L1 weighting is adopted for the texture image with a 

large amount of noise, which can help to avoid the staircase effect in de-noising. Then, by combining the two 

parts after decomposition with the compressed sensing algorithm, a complex model with two regular terms is 

obtained. In order to solve this complex model, the alternating direction method of multipliers [7] (ADMM) 

similar to that in reference [8] is used for iterative solution. However, different from reference [8], in this 

paper, the Barziilai-Borwein method [9] in the gradient descent algorithm is directly adopted to solve the 

first sub-problem of the ADMM algorithm. Finally, the experiment results demonstrate that the proposed 
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method is effective, and the objective PSNR and SSIM are superior to those of other algorithms of 

compressed sensing reconstruction. 

2. Theoretical Foundation 

The classical total variation regularization model [2] is as follows: 

2

arg min ( )
2u

u u f du Du du

 

   
                                                         (1)

 

where u is the original image, f represents noisy image, D is the gradient operator of forward difference, 

 is the domain of the image,   is the parameter. The first term is a fitting term to ensure that the de-noised 

image is close to the original image; the second term is a regular term, which is also known as the total 

variation of u , and can promote the smoothness of the de-noised image.  

The high-dimensional original value u is recovered from the low-dimensional observed 

value f Au b  , where
Mf R , Nu R , *M NA R  ( M N ) is the observation matrix. This kind of 

reconstruction problem is essentially an ill-posed inverse problem, which can be solved by optimization 

algorithm. Therefore, the total variation model combined with compressed sensing is as follows: 

2

arg min ( )
2u

u Au f du Du du

 
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                                                      (2)

 

The total variation spectral framework, which was proposed by Gilboa, can decompose the original 

image into contour image and texture image [10, 11]. The image u can be decomposed into two parts: 

contour Lu and texture Hu .  

 
(a) original image                    (b) contour image                           (c) texture image 

Fig. 1: Images obtained by the decomposition of noisy image 

3. Proposed Algorithm 

The compressed sensing de-noising algorithm based on L1-L2 norm regularization is improved based on 

the compressed sensing algorithm proposed in reference [4], and it combines the advantages of weighted 

regularization and compressed sensing. In order to maintain the texture and edge information of the image 

while avoiding the staircase effect, the decomposed images are weighted and regularized: 

1 2
( ) H H L Lu w Du w Du  

                                                                      (3)
 

where / (1 )Hw    , 1/ (1 )Lw   ,   is the absolute value of the image gradient mean. 

The compressed sensing de-noising algorithm model based on L1-L2 norm regularization is: 

  

,

2

1 2 2( )
( , ) arg min ( )

2H L
H L H H L Lu u

u u w Du w Du Au f
     (4) 

The de-noising model (4) is a complex model with two regular terms. In order to facilitate the solution, 

ADMM is used to solve Hu and Lu respectively. 

Fix Lu , the sub-problem of Hu can be obtained: 

2

1 2
arg min( )

2H

H
H H H H Hu

u w Du Au f
    (5) 

Fix Hu , the sub-problem of Lu can be obtained: 
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2 2
arg min( )

2L

L
L L L L Lu

u w Du Au f
    (6) 

where H Lf f Au  , L Hf f Au  , H and L are the parameters. Obviously the problem after 

decomposition is easier to be solved than the original problem (4). 

It is difficult to solve the sub-problem (5) directly. Therefore, the variable splitting [12] can be used to 

introduce the auxiliary variables 
1u and Hd . Set 

1 Hu Au and H Hd Du . Then the sub-problem (5) can be 

converted to a constrained optimization problem. 

2

11 2

1

arg min( )
2

. .

H

H
H H H Hu

H H H

u w Du Au f

s t u Au d Du


  

 

 (7) 

The problem (7) can be converted to an unconstrained optimization problem using the Lagrange 

Multiplier Method, and its corresponding Lagrangian function is as follows: 
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(8) 

where 1H and 2H are penalty term coefficients, H and H are augmented Lagrangian coefficient 

matrix. 

Since equation (8) contains three variables: Hu , Hd and 1u , it is  complicated to solve. The ADMM can 

be used again to decompose it into three sub-problems with only one variable. Given  
K
Hu , 

K
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k
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1) Fix 
K
Hd and 

1

ku to solve 
1k

Hu 
, Hu can be expressed as: 
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Gradient descent can be adopted to solve Hu , 
1k k k k

H H H Hu u g   , where 
k
Hg can be obtained by 

derivation, and 
k
H can be obtained by Barzilai-Borwein method [9]. 
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(11) 

2)Fix 
1k

Hu 
and 

1

ku to solve 1k
Hd  ,  Hd can be described as : 

2

2 21 2
arg min( ( / 2) / )

H

k
H H H H H H Hd

d d Du d       (12) 

Equation (12) can be solved by the Shrinkage method [13]: 

1 1 1 1

2 2 2 21 1
max( / 1/ ,0)*( / ) / /k k k k k k k

H H H H H H H H H H Hd Du Du Du               (13) 

3)Fix 
1k

Hu 
 and 1k

Hd  to solve 1

1

ku   , 1u can be expressed as: 
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Set the derivation of equation (14) equals to zero, then 
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where the update of  needs to meet the deviation criteria[14]. Set 
1 2( )k

H H MN    , where
1k

H


is the 

noise standard deviation of 
k

Hf , MN is the total number of pixels in the image. If 1 1

1

k k k
H Hu f c   , 

then H is approaching 0. If 1 1

1

k k k
H Hu f c   , we set 1 1

1

k k k
H Hc u f    and hence we have: 
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Similarly, two auxiliary variables 2u and Ld are also needed to solve the sub-problem of Lu . Set 

2 Lu Au and L Ld Du . In solving the sub-problem of Lu , the methods for solving 
1k

Lu 
and 

1

2

ku 
 are 

similar to those for solving 
1k

Hu 
and 

1

1

ku 
. In other words, 
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by replacing the corresponding subscript  H  with L  , respectively. At the same time,
1k

Ld 
 can be obtained  

in  the following way different from 
1k

Hd 
 ; see (17) below.Given 

k
Lu , 

k
Ld  , 

2

ku , 
k
L  , 

k
L  and 

k
L ,  and fix 
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 and 
2

ku ,
1k

Ld 
can be expressed as :  

11 1

112

2

1 1
max * ,0 *

1
*

kk k
L kkL

L

d S S
S S



 



 
  

  

 
(17) 

where 1 1

2/k k k
L L LS Du      , and S denotes the conjugate of S . 

4. Experimental Results and Conclusion 

Four classical digital images of 256 × 256 pixels: Lena, Cameraman, Barbara and Baboon are selected 

for the experiment. All the experiments were performed on MATLAB R2010b 7.11. The computer processor 

used in the experiment is Intel(R) i5-7300HQ, and RAM is 8.00GB. The noise is the Gaussian white noise 

with standard deviations of 0.05, 0.1, 0.2, and 0.3 respectively. The maximum number of iteration is set to 

500; the algorithm precision tol  is set as 410 , that is, the algorithm stops when 1 /k k ku u u tol   . The 

penalty term parameters are set based on the experimental experience as 1 30H  , 
3

2 2*10H  , 

1 80L  , 2 5L  .  SNR and SSIM are used as evaluation indexes for image reconstruction. The larger the 

index values of the two evaluations, the better. The unit of PSNR is dB, and the range of SSIM is from 0 to 

1.The contrast experiment algorithms used in this work are the TV algorithm in reference[2] and compressed 

sensing algorithm in reference[4]. The compressed sensing algorithm and the proposed algorithm all use 

discrete wavelet transform (DWT) to sparse the noisy image. Gaussian random matrix is used for 

measurement matrix A , and the sampling ratio is 0.4. 

 
(a) original image                                 (b) noisy image                                   (c) recovered image 

Fig. 2: The image of cameraman de-noised by the proposed algorithm when the noise is 0.1. 
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(a) original image                             (b) noisy image                               (c) recovered image 

Fig. 3: The image of barbara de-noised by the proposed algorithm when the noise is 0.2. 

Table 1: Results of three de-noising algorithms 

 Lena Cameraman 

 TV Reference[4] 
Proposed 

algorithm 
TV Reference[4] 

Proposed 

algorithm 

Noise PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

0.05 30.56 0.69 31.81 0.70 32.94 0.72 26.27 0.69 27.39 0.69 28.5 0.72 

0.10 30.02 0.66 31.43 0.68 32.85 0.70 25.93 0.66 26.98 0.67 28.04 0.69 
0.20 28.34 0.62 30.65 0.67 32.50 0.68 24.75 0.55 26.52 0.63 28.01 0.65 

0.30 26.45 0.51 29.35 0.55 31.28 0.63 23.27 0.45 25.64 0.57 27.57 0.63 

 Barbara Baboon 
 TV Reference[4] Proposed 

algorithm 

TV Reference[4] Proposed 

algorithm Noise PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 
0.05 23.65 0.61 26.51 0.68 27.96 0.70 27.75 0.65 29.96 0.69 31.84 0.79 

0.10 23.52 0.59 26.23 0.66 27.79 0.68 27.54 0.64 29.88 0.66 31.42 0.77 

0.20 22.99 0.57 25.84 0.61 27.66 0.66 26.80 0.62 29.31 0.62 30.73 0.71 
0.30 22.16 0.53 25.08 0.57 26.54 0.59 25.76 0.59 28.41 0.61 29.70 0.67 

It can be seen from Table 1 that for the de-noising effect of the four test images, the value of PSNR is 

more than 1 dB compared to the contrast experiment algorithms. Especially when the image noise is large, 

the SSIM value of the proposed algorithm is higher, indicating that the de-noised image has a good structural 

similarity with the original image. This is because different regularization is adopted for the texture and 

contour image according to the different features during the de-noising process, which allows better texture 

features of the image after de-noising. 

The proposed algorithm is a compressed sensing de-noising algorithm based on the L1-L2 norm 

regularization. Firstly, the image is decomposed into a contour image and a texture image by the total 

variation spectral framework method, and then the contour image and the texture image are regularized 

according to the image structural features. Then, ADMM is adopted for solution. Finally, the experimental 

results demonstrate that the de-noising effect of the proposed algorithm is better than that of the contrast 

experiment algorithms. However, it is worth noting that the gradient descent algorithm used for solving sub-

problems has a large number of iterative steps. In future research, the conjugate gradient algorithm with 

fewer iteration steps can be considered. 
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