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Abstract. Non-orthogonal multiple access (NOMA) has been proposed to enhance system capacity for 

visible light communication (VLC) systems. However, the effective power allocation strategy is one of 

critical problems that needs to be solved in NOMA. In this paper, a new method for multi-user downlink 

power allocation in VLC NOMA based on reinforcement learning is proposed. This method utilizes 

distributed multi-agent Q-learning algorithm with low complexity to maximize sum throughput of the 

multiuser VLC downlink system which is subject to both user fairness and quality of service (QoS). The 

numerical results show that a large sum logarithmic user rate can be obtained with higher probability 

compared with other conventional power allocation algorithms. 
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1. Introduction 

At present, visible light communication (VLC) has attracted much attention due to the advantages of 

unlicensed spectrum, free from electromagnetic interference, convenient deployment, inherent high security 

and low energy consumption [1-4]. Apparently, VLC is considered as a promising technology for future 

communication networks. Motivated by this, multiple access techniques in wireless and optical 

communication networks have been applied in VLC channels to enhance the throughput of VLC networks, 

including time division multiple access (TDMA), frequency division multiple access (FDMA), code division 

multiple access (CDMA) and orthogonal frequency division multiple access (OFDMA) [5-8].  

Recently, non-orthogonal multiple access (NOMA) has been proposed as a promising method to enhance 

the spectrum efficiency (SE) in the VLC networks [9].
 
Different from the other multiple access techniques, 

multiple users in NOMA are superposed in the power domain on the transmitter side and separated by using 

successive interference cancellation (SIC) at the receiver side. As a key technique to improve the 

performance of NOMA in VLC networks, the power allocation strategy has gained much attention in related 

researches. The sum logarithmic user rate maximization for VLC downlinks with NOMA was studied in [10]. 

It has been proved that the nonconvex optimization problem can be equivalently transformed into a convex 

problem and the optimal power allocation was obtained by using the Lagrangian dual method. However, the 

conversion process is relatively complex and the restrictions of user quality of service (QoS) were not 

considered in the optimization. In [11], the two-user power allocation optimization was studied in downlink 

VLC NOMA systems with consideration of the optical power and the QoS constraints, while the 

effectiveness of the method needs to be further verified for multiple users. The authors in [12] proposed two 

types of quality of services guaranteed power allocation using the gradient projection algorithm. In these 

researches, the channel capacity was described by Shannon's formula used in RF multiple-access channel. 

For VLC NOMA, the channel is different due to the use of intensity modulation, thus a more precise 

description of the channel capacity is very desired.  
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 Recently, Q-learning applied in wireless communications has been extensively studied. In [13], the 

power control scheme based on Q-learning and the Decision Tree Classifier were proposed to enhance 

system capacity and energy efficiency in Device-to-Device (D2D) communication system. In addition, the 

distributed and hybrid Q-learning power allocation algorithms were used to enhance the Long Term 

Evolution (LTE) heterogeneous network performance in [14]. 

In this paper, an optimization algorithm of power allocation based on Q-Learning in downlink VLC 

system with NOMA is proposed, which to the best of our knowledge, has not been reported in literature. The 

logarithmic utility function is adopted to achieve good user fairness and the QoS requirements are taken into 

consideration in the optimization. Meanwhile, considering the intensity modulation and direct detection in 

VLC NOMA, a more precise formula is used to calculate the channel capacity. By taking advantage of multi-

agent distributed Q-learning algorithm, the sum logarithmic user rate can achieve near-optimal performance 

in non-convex condition. Power allocation optimization for three users and five users are performed to verify 

the feasibility of the proposed strategy. Numerical results show that the proposed algorithm outperforms the 

other conventional schemes, especially in high signal noise ratio (SNR) scenarios. 

2. System Model 

 
Fig. 1: VLC channel model. 

As shown in Fig.1, we consider a downlink VLC system, consisting of one Light Emitting Diode (LED) 

and K users. For the VLC channel, the channel gain of the LOS propagation path between the LED and user 

k is given by [15]
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where          ; A represents the receiver photodiode (PD) detection area;    represents the 

responsivity of the PD;    is the distance between the LED and the illuminated surface of the k-th PD;    is 

the angle of irradiance;    is the angle of incidence;  (  ) is the gain of the optical filter; m is the order of 

Lambertian emission and can be given by 
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where      denotes the semi-angle of the LED. Moreover,  (  ) in (1) is the gain of the optical concentrator, 

which can be expressed as 

 (  )  {
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                                                       (3) 

where n denotes the corresponding refractive index.      is the receiver PD Field-of-View (FOV). 
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Without loss of generality, we assume that all of user channels are sorted in an ascending order as 

       . Based on the NOMA principle, all of the transmitted signals are superimposed in the power 

domain, which can be written as [10]
 

  ∑        
                                                                    (4) 

where    is the modulated signal for user k;    represents the allocated power for user k; D is the DC-offset 

to ensure the positive instantaneous optical intensity. 

At the receiver, after removing the DC-offset, the received signal at user k can be given by  

   ∑           
 
                                                            (5) 

where    denotes the additive zero-mean Gaussian noise with variance   .   is the optical-to-electrical 

conversion coefficient, which is considered as 1 for convenience in the following derivations. By taking 

advantage of SIC technique, the user k will detect the message of user  ,    , and then removes the 

message from the observation in a successive manner. The message for user  ,     , will be treated as the 

noise at the user k. In this way, user k can perfectly decode the weaker channel signal, removing partially 

inter-user interference. Then, the lower bound to rate of user k is obtained as [16-17] 
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where    ,     -  represents the ratio between expectation of the received power and the maximum 

received power;, -  denotes     *   +;    (    )
 ,          and          . 

3. Problem Formulation 

In this section, we formulate the fairness power allocation optimization problem by introducing a 

logarithmic utility function while satisfying the user QoS requirement. In many wireless communication 

scenarios, the logarithmic utility function is suitable for achieving good user fairness [18]. Since the user rate 

is the most important factor to determine the satisfaction of users, the utility function of user k can be 

described as     (   ), where B is the VLC system bandwidth. The corresponding optimization problem 

can be formulated as 
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where    is the minimum required rate of user k,    is the vector    (          ),      denotes the 

maximal transmission power. In the VLC system, the bandwidth B is a constant. Therefore, (7) can be 

equivalently expressed as  
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The goal of the optimization problem is to find the best power allocation among users, maximizing the 

sum logarithmic rate of the system. According to (8), it can be found that the problem is non-convex. So we 

consider the Q-learning as a good solution for this problem which is suitable for non-convex case with 

simple algorithm. The Q-learning based power control algorithm is introduced in the next section. 

4. Q-learning Algorithm 

In this section, we propose a reinforcement learning approach based on Q-learning to solve the complex 

power allocation problem. By defining each user as an agent, the VLC system is modeled as a multi-agent 
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network, which can be investigated by multi-agent distributed Q-learning. Multiple agents (users) aim at 

learning the optimal decision policy (power allocation) by repeatedly interacting with the environment. We 

first illustrate the multi-agent Q-learning process, and then the power control algorithm based multi-agent Q-

learning is presented. 

4.1. Multi-agent Distributed Q-learning Algorithm 

The multi-agent distributed Q-learning is a model-free reinforcement learning algorithm which consists 

of an environment and multiple agents, as shown in Fig. 2. The algorithm can be considered as a Markov 

Decision Processes [19] which is defined as (       (   )), where N is the number of the agents, S is a set 

of environment states, A is a set of available actions which agents can undertake.  (   ) is the reward 

function which reflects the instant reward when agent in state     chooses action    . For each agent, the 

algorithm defines a Q-table in which element can be expressed as Q(s,a). Q(s,a) is the cumulative discounted 

reward when the agent chooses action     at state    . 

 
Fig. 2: The basic principle of multi-agent distributed Q-learning. 

The ultimate goal of this algorithm is to learn the best action selection strategy for each state and 

maximize the cumulative discounted reward. The agents learn optimal policy by taking actions to interact 

with environment. For each interaction, the agents obtain the environment current states and rewards. Based 

on the received rewards, the agents update their actions using the  -greedy strategy and return new actions to 

the environment. The environment transfers to the new states based on new actions. Then the system obtains 

the reward and update Q-table using (9). Through several interaction, it will find the best strategy for each 

state which has the maximized cumulative reward.  

    (     )    (     )   ,             (         )    (     )-              (9) 

where   ,   - is the discount factor illustrating the ratio between the immediate rewards and the future 

rewards,   ,   - is the learning rate. 

4.2. Multi-agent Distributed Q-learning based Power Control Algorithm 

In our VLC-NOMA downlink system, all of the users that can receive signals are treated as agents. For 

each agent   (       ), the states, actions, reward function and associated Q-table are defined as follows: 

States: We define two parameters of states for each agent in this system. The state of agent k at time t is 

defined as 

  
  (  

 、  
 )                                                                    (10) 

where   
  represents whether the user k satisfies the QoS threshold. The possible value is 

  
  {

                 
               

                                                          (11) 

where    is the targeted data rate which satisfies the QoS requirement of user k. 

The   
  represents the total transmission power in this system, which is defined as 
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where      is the maximal transmission power limitation in this system.    and     are the constants for 

fine-tuning. 

Action: The action of each agent is defined as a set of transmission power level which can be allocated to 

each user, as:   *          +, where   is the number of power level. The way of choosing actions is  -

greedy strategy, which is described as follows 

  {
            (   )                      
                                          

                             (13) 

where   is the exploring probability, and     is the exploiting probability. This strategy provides the trade-

off between exploitation and exploration. 

Reward function: To solve the problem (8), the reward function in this system is defined as 

  {
∑                         ∑        

 
     

   

                                                                
                               (14) 

Q-table: Each agent k maintains a Q-table   (   ) which is a two-dimensional table constituted by 

states and actions. The update rules of Q-table are expressed by (9). 

The Multi-agent distributed Q-learning based power control algorithm is summarized in Algorithm 1. 

 

Algorithm 1.  Multi-agent distributed Q-learning based power control algorithm 

1:   Initialize  

2:      let     

3:      for each               do 

4:        initialize Q-table   (   ) 

5:      end for 

6:      initialize the starting states    

7:   Learning 

8:      loop 

9:      select actions: generate a random number   

10:    if     then 

11:        select action randomly 

12:    else 

13:        select action   
            (    ) 

14:    end if 

15:  receive reward    

16:  observe next states      

17:  update the Q-table as in Eq. (9) 

18:                 

19:  End loop 

 

 

5. Experiment and Discussion 

In this section, the performance of the proposed algorithm is demonstrated by using Monte Carlo method. 

In the VLC system, we consider a room size of 6m*6m*3m. We set the target data rate as               
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for all of the users. The parameters of Q-learning are set as: learning rate      , discount rate      . The 

channel of VLC is LOS propagation path which has same parameters as [15]. 

 
Fig. 3: CDF of three users for fixed NOMA and proposed NOMA algorithm (        ) 

 
Fig. 4: CDF of five users for fixed NOMA and proposed NOMA algorithm (        ) 

The power allocation for three users was investigated at first. Fig.3 shows the cumulative distribution 

function (CDF) of sum logarithmic rate with fixed NOMA algorithm and proposed NOMA algorithm, when 

we set the maximal transmission power as          and        . The noise power spectral density 

is             . For the proposed NOMA algorithm, the probability of sum logarithmic rate greater than 

5.7 is around 90%, while for the fixed NOMA, it is around 20%. This indicates the large sum logarithmic 

rate is obtained with higher probability after the optimization. Further, the maximal sum logarithmic rate is 

around 5.7 with fixed algorithm while for the proposed algorithm, it is larger than 6.3. It is obvious that the 

proposed algorithm significantly outperforms the fixed NOMA algorithm. Fig. 4 compares the sum 

logarithmic rate CDF of fixed NOMA and proposed NOMA algorithm when K=5, where the maximal 

transmission power is set as          and        . The noise power spectral density is 

            . For the proposed algorithm, the probability of sum logarithmic rate greater than 4 is around 

100% while 0% for the fixed algorithm. It has the same result as K=3 and shows the feasibility of the 
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proposed strategy. Therefore, the proposed scheme achieves better fairness compared with the fixed NOMA 

scheme. 

 
Fig. 5: CDF of three users for GPRA, fixed NOMA and proposed NOMA algorithm (        ) 

Fig. 5 shows CDF of sum logarithmic rate with fixed NOMA algorithm, gain ratio power allocation 

algorithm (GRPA) [9] and the proposed NOMA algorithm when K=3. It can be found that the performance 

of the GPRA algorithm is relatively poor. It is because that the GRPA allocated scheme is related to the 

channel gain and decoding order, and the requirement that a user k rate is larger than    cannot be 

completely guaranteed, that is, the user's QoS requirements cannot be satisfied. Therefore, the GRPA 

algorithm is not suitable for this scenario. 

Fig. 6 shows CDF of sum logarithmic rate with fixed NOMA algorithm and proposed NOMA algorithm 

when the noise power spectral density decreases to             . In Fig. 3, the sum logarithmic rate 

obtained by the proposed algorithm is 0.4 larger than the fixed algorithm for a certain CDF value of 0.5, 

while in Fig. 6, the optimized sum logarithmic rate is 0.6 larger than the fixed algorithm. This means that the 

optimization performance of the proposed algorithm is improved when the noise power spectral density 

decreases, which indicates that the proposed NOMA algorithm is more suitable for high SNR scenarios. 

 
Fig. 6: CDF of three users for fixed NOMA and proposed NOMA algorithm (        ) 
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6. Conclusion 

In this paper, we proposed a new power control method based on multi-agent distributed Q-learning in 

VLC-NOMA downlink system. Guaranteeing the user fairness and QoS requirements, the sum logarithmic 

user rate of three and five users are calculated and the effectiveness of the proposed optimization strategy is 

verified. Compared with the fixed NOMA algorithm and GRPA algorithm for power allocation, the large 

sum logarithmic rate can be obtained with higher probability by taking advantage of the Q-learning 

algorithm which indicates the proposed algorithm performs better than other conventional schemes. 
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