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Abstract. Image segmentation is crucial to a series of medical applications. One of the current problems is 

that imbalanced pixel classes have a negative effect on the results of medical image segmentation. However, 

the method of employing weighted loss cannot address this problem well. Therefore, we are motivated to 

propose a novel method based on Generative Adversarial Networks (GANs) and attention mechanisms to train 

our segmentation model with effective loss functions. Firstly, the proposed model consists of the segmentor 

network and the critic network, which are trained by adversarial learning. Moreover, the attention module we 

used in each residual block takes not only channel attention but also spatial attention into consideration and 

makes the segmentor perform better. The overhead of computation and parameters costed by our attention 

module is negligible. In addition, our work extends other methods by means of using pixel-wise loss functions, 

which include multi-scale loss and binary cross entropy loss. Finally, our work presents the results of 

comparing three different methods on medical image segmentation and our method yields a higher performance 

than theirs on MICCAI PROMISE12, DSB2018 and the lung nodule datasets. 
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1. Introduction 

So far, semantic segmentation [1-3] has been commonly used in the field of medical imaging. This 

technology aims at figuring out the precise location and shape of structures in the human body. It makes 

medical disorders and their treatment being assessed properly. Methods based on convolutional neural 

networks (CNN) [4-8] currently perform well. However, there are some challenges in the field of medical 

image segmentation. Firstly, one of the challenges is concerned with the imbalanced classes of pixels. More 

specifically, although a balanced number of patches from each class can be sampled by patch training, the 

numbers of pixels, which correspond with their belonged classes, are imbalanced in methods of training whole 

images. Secondly, a new problem is that weighted loss function proposed for the first issue is task-specific and 

difficult to be optimized. As a result, their methods cannot resolve the problem effectively. Thirdly, another 

limitation is that they also cannot learn multi-scale spatial constraints directly. 

To overcome these challenges, we propose a novel end-to-end network for medical image segmentation 

(AM-AN). Our model consists of two parts: the segmentor network and the critic network. To construct this 

model, we take the concept of adversarial learning as a reference. In addition, we employ the attention 

mechanism to improve performance of the segmentor. Our attention module is also made up of two parts which 

correspond to channel attention and spatial attention, respectively. Channel attention module is used to figure 

out inter-channel relationship of features while spatial attention module is used to decide where to focus on. 

We eventually place the attention module at the end of each residual block. This attention module can improve 

model’s ability of extracting features. Besides, the overhead of calculation and the total number of parameters 

do not increase. In terms of loss function, we use the critic network to extract hierarchical features and then 

concatenate these features to compute a pixel-wise loss. The multi-scale loss has a good effect on optimizing 
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our network. Furthermore, we also use a pixel-wise binary cross entropy loss function to help the segmentor 

perform better. In the experiment, we use MICAAI PROMISE12, Data Science Bowl 2018 (DSB2018) and 

lung nodule datasets to verify our method work better than other’s. The experiment results demonstrate that 

our method increases the accuracy of medical image segmentation with effect. 

Summarizing, the main contributions of our work are the following: 

• We propose a novel end-to-end adversarial network, namely AM-AN, which is based on attention 

mechanism for medical image segmentation. We demonstrate that our network outperforms the 

networks constructed by other methods when segmenting medical images. 

• We propose an effective attention module in each residual block of our model consisting of both spatial 

attention submodule and channel attention submodule. The experiment demonstrates the better results 

of using this attention module. 

• We propose the pixel-wise loss functions capable of providing more precise segmented images, 

including multi-scale L1 loss with a different activation function and binary cross entropy loss. 

The rest of this paper is organized as follows. In section 2, there is a brief overview of related work. In 

section 3, we display our network architecture including attention module and illustrate the loss functions. In 

section 4, there are results and analysis. Finally, we conclude with a summary of our main contributions and 

results. 

2. Related Work  

2.1. Medical Image Segmentation 

Because of the high complexity possessed by medical image and lack of simple linear feature, medical 

image segmentation technology is always a complex and critical step in the field of medical image processing 

and analysis. In traditional segmentation methods, Kedir et al. [9] studied the impact of smoothing filters when 

applied to waveform image pre-processing for segmentation. Yao-Tien Chen [10] proposed a level set method 

based on the Bayesian risk for textured segmentation. Traditional methods are also used for medical image 

segmentation [11]. Javed et al. [12] proposed a system to enhance the quality of the human brain magnetic 

resonance image (MRI). In this system, median filter is used for image enhancement of brain MRI and fuzzy 

c-means for segmentation purpose. Pun et al. [13] proposed a skin colour segmentation approach by texture 

feature extraction and k-mean clustering. This approach improved the traditional skin classification by 

combining both colour and texture features for skin segmentation. 

 So far methods based on deep learning have been popular in this field and have achieved remarkable 

breakthroughs. For example, Korez et al. proposed a 3D fully convolutional networks (FCN) [14] which 

improves the segmentation accuracy of spinal MRI. After the FCN-based U-net [5] has been proposed, Brosch 

et al. [15] used U-net when segmenting white matter lesions in brain MRI. With less training data, this method 

still had a positive effect on the experiment results. Noh et al. [16] used an encoder-decoder structure to obtain 

more details of images. However, the imbalance of pixel classes is inevitable in their networks and cannot 

further increase the accuracy.  

2.2. Generative Adversarial Network 

Goodfellow et al. proposed Generative Adversarial Networks (GANs) [17] which trains generator 𝐺 and 

discriminator 𝐷  with a minmax game. Throughout this adversarial game, 𝐺  is responsible for generating 

samples similar to real data while 𝐷 is responsible for discriminating between samples and real data. 

So far GANs have attracted plenty of attention within the computer vision field. Numerous works such as 

[18-21] have further extended and improved the original GAN [17]. Radford et al. [18] proposed a class of 

CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural 

constraints. Salimans et al. [19] presented a variety of new architectural features and training procedures that 

they apply to the GANs framework. Arjovsky et al. [20] introduced a new algorithm named Wasserstein GAN, 

an alternative to traditional GAN training. Gulrajani et al. [21] proposed an alternative to clipping weights: 

penalize the norm of gradient of the critic with respect to its input.  
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2.3. Attention Mechanism 

There is no doubt that attention mechanism has been widely used because of its benefits proved by a series 

of tasks [22-24]. According to the concept of focusing on mask to form the attention mechanism, attention can 

be divided into hard attention and soft attention. From the perspective of attention domain, Hu et al. [25] 

propose a Squeeze-and-Excitation module that computes channel-wise attention belonging to soft attention. 

Wang et al. [26] propose Residual Attention Network which uses an encoder-decoder attention module. 

However, these methods just extract suboptimal features that aim to infer channel attention and are lacking in 

spatial attention.  

3. Method 

3.1. Network Architecture 

The proposed network, namely AM-AN, is a novel end-to-end adversarial network based on attention 

mechanism for medical image segmentation. As illustrated in Fig. 1, components making up our AM-AN are 

the segmentor subnetwork and the critic subnetwork. Given an input image, a predicted mask is the output of 

the segmentor. We use attention mechanism in the segmentor to preserve the significant information of input 

images. Then, the predicted masked image can be achieved by pixel-wise multiplication of the predicted mask 

and the input image as shown. Similarly, the target masked image can be achieved by pixel-wise multiplication 

of the ground truth mask and the input image. The masked image is the input of the critic. We employ the 

output of the critic to calculate the proposed pixel-wise loss functions, which makes more detailed information 

propagated backward.  

Fig. 1: The architecture of AM-AN. 

a.  Segmentor Subnetwork 

Our method of constructing the segmentor can extract features of input images better. Furthermore, it also 

expands receptive field so that more detailed information can be achieved. More specifically, the framework 

of the segmentor is based on the U-net [5]. However, we employ global convolution instead normal 

convolution when the kernel size is larger than 7 as shown in Fig. 2. This choice has two advantages. From the 

aspect of classification, tight connections can be built between feature maps and pixel-wise classifiers. In 

addition, local information can be preserved. Besides, the stride of convolution layers in encoder is 2 while 

stride in decoder is 1. All downsampling blocks take leaky ReLU as their activation layer. In contrast, all 

upsampling blocks after executing batch normalization take ReLU as their activation layer. 

 
Fig. 2: The architecture of the segmentor. 
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b.  Critic Subnetwork 

Apart from the segmentor, the critic is also a crucial part of our module. The structure used to construct 

the critic network is easier to achieve the larger receptive fields and reduce the number of parameters. We 

employ fully convolutional layers in the critic. Similarly, all downsampling blocks in the critic take leaky 

ReLU as their activation layer. Note that there are no residual blocks in the critic as shown in Fig. 3.  

 
Fig. 3: The architecture of the critic. 

3.2. Attention Module 

The goal of using both channel attention and spatial attention in our attention module is to make the 

proposed adversarial network perform better in medical image segmentation. Valid information of the input 

medical images can be well preserved. Besides, it is designed to be light-weight and will not lead to the increase 

of the overhead of calculation and parameters. As shown in Fig. 4, attention module used in residual blocks of 

the segmentor is composed of two parts corresponding to channel attention and spatial attention, respectively. 

This attention module is placed at the end of each residual block in the segmentor. Given a feature map F ∈

ℝ𝐶×𝐻×𝑊 as input, a channel attention map 𝑀𝑐 ∈ ℝ𝐶×1×1 and a spatial attention map 𝑀𝑠 ∈ ℝ1×𝐻×𝑊  will be 

achieved. Procedures of this process are implemented as follows: 

 F′ = 𝑀𝑐(F)⊗ F (1) 

 F′′ = 𝑀𝑠(F')⊗ F' (2) 

where ⊗ refers to element-wise multiplication.  

 
Fig. 4: Convolutional Block Attention Module. 

During the process of producing an attention map, the emphasis is to figure out the significant information 

in an input image. As illustrated in Fig. 5, part of the channel attention module is similar to SE-Net proposed 

by Hu et al. [20]. However, we also take max pooling into consideration besides average pooling. Only the 

place with the greatest response in the feature map has gradient feedback during the calculation of gradient 

backward propagation. Therefore, the step of max pooling can be a complement to the step of average pooling. 

Then the two achieved 1D features are the input of shared network made up of multi-layer perceptron (MLP). 

Finally, it is essential to use sigmoid function. The process is presented as follows: 

 𝑀𝑐(𝐹) = 𝜎(𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐹)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐹))) (3) 
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Fig. 5: Channel Attention Module. 

It is attention on the spatial dimension that makes the proposed module different. Spatial attention makes 

it clear which parts of the feature map have the greater response from the respect of spatial dimension. Average 

pooling and max pooling are used the same as in channel attention module to compress the input feature map 

firstly. Whereas this compression is performed on the channel dimension instead of the spatial dimension as 

shown in Fig. 6. The two 2D achieved features are concatenated to get a feature map with two channels. Then 

the feature map is convolved by a hidden layer with a single convolution kernel. Besides, the filter size is 7 × 7. 

In the final step, sigmoid function is still needed. The process is presented as follows: 

 𝑀𝑠(𝐹) = 𝜎(𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐹);𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐹)])) (4) 

 
Fig. 6: Spatial Attention Module. 

3.3. Loss Functions for Training 

The traditional loss functions of generator and discriminator in GANs [12] are separated. They cannot back 

propagate more information of gradients and make the adversarial training process not stable enough. However, 

the loss function of our segmentor and critic network are trained by the same multi-scale loss function. The 

goal of our network is to figure out the map between an input image and its corresponding segmentation mask. 

Note that the segmentation mask here refers to pixel-wise label maps. Therefore, the significant step of 

implementing our multi-scale loss is to compute the Mean Absolute Error (MAE) value of two feature maps 

obtained by each convolution layer in the critic. The multi-scale loss makes the adversarial training process 

stable. It is defined as: 

 min
𝜃𝑠

max
𝜃𝑐

ℒ(𝜃𝑠, 𝜃𝑐) =
1

𝑁
∑ ℓ𝑚𝑎𝑒
𝑁
𝑛=1 (𝑓𝑐(𝑥𝑛 ∘ 𝑆(𝑥𝑛)), 𝑓𝑐(𝑥𝑛 ∘ 𝑦𝑛)) (5) 

where 𝑥𝑛 refers to 𝑁 training images and 𝑦𝑛 refers to 𝑁 ground truth label maps. Besides, ℓ𝑚𝑎𝑒 refers to the 

MAE or 𝐿1 distance. In addition, 𝑥𝑛 ∘ 𝑆(𝑥𝑛) represents the input image masked by the predicted result from 

the segmentor while 𝑥𝑛 ∘ 𝑦𝑛 represents the input image masked by the corresponding ground truth label map. 

More specifically, the masked image is obtained by pixel-wise multiplication of the input image and label map. 

𝑓𝑐(𝑥) denotes that the critic network extracts hierarchical features from the image 𝑥. Furthermore, the ℓ𝑚𝑎𝑒 

function is defined as: 

 ℓ𝑚𝑎𝑒(𝑓𝑐(𝑥), 𝑓𝑐(𝑥′)) =
1

𝐿
∑ ‖𝑓𝑐

𝑖(𝑥) − 𝑓𝑐
𝑖(𝑥′)‖

1
𝐿
𝑖=1  (6) 

where 𝑓𝑐
𝑖(𝑥) denotes the 𝑖th layer of the critic extracts feature maps from the image 𝑥. Besides, 𝐿 represents 

the total number of layers of the critic network.  
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Since it is not easy to distinguish between the predicted result and the corresponding ground truth label 

map, we take an adaptive logistic activation function as the last layer of the segmentor instead of sigmoid 

function. The new activation function is defined as: 

 𝑓(𝑧) =
1

1+𝑒−𝑧/𝑘
 (7) 

where 𝑘 is used to control the steepness of the curve. This function will become into sigmoid function when 

the value of 𝑘 is 1. Note that the curve of this function will be steeper with the decrease of 𝑘’s value. 

Apart from the multi-scale 𝐿1 loss function for training the whole network, we still use binary cross entropy 

(BCE) loss function to train the segmentor network. The predicted result generated by the segmentor can be 

more similar to ground truth label map because of the different use of BCE loss. More specifically, BCE loss 

function is employed in the form of pixel-wise loss. In other words, there are as many binary decisions as 

pixels in the image. Such choice of loss function can provide more details so that gradients with more 

information can be back propagated to optimize our segmentor. 

4. Experiment 

4.1. Datasets 

In this work, we use MICAAI PROMISE12, Data Science Bowl 2018 (DSB2018) and lung nodule datasets 

for verifying the performance of our model and compare it with other models’. 

The MICAAI PROMISE12 dataset includes 50 MRI images of prostates. 261 sets of data which are slices 

of prostate region can be achieved. The DSB2018 dataset includes 670 sets of training data. One original image 

together with multiple labels compose one set of data. Each label corresponds to a single nucleus. Both are 

public medical image datasets. In addition, there are 19 patient data in the lung nodule dataset. 

We divide each dataset into three parts with a ratio of 7:2:1, which corresponds to training data, validation 

data and testing data, respectively. 

4.2. Evaluation Metrics 

One of our evaluation metrics is the Dice score which can normalize the number of true positives to the 

average size of the two segmented regions. It is computed as: 

 Dice =
2|𝐴1∩𝐴2|

|𝐴1|+|𝐴2|
 (8) 

where 𝐴1 and 𝐴2 refer to the ground truth label region and the corresponding predicted region respectively. 

Dice values range between 0 and 1, with 1 corresponding to a perfect overlap. The larger the Dice score is, the 

better the method performs. 

The other evaluation metric is the mean Intersection-over-Union (mIoU), which is also known as Jaccard 

index. It is calculated as: 

 mIoU =
1

𝑛
∑

|𝐴1∩𝐴2|

|𝐴1∪𝐴2|
𝑛  (9) 

where 𝑛 represents the number of input images. Similarly, the larger the mIoU score is, the better the method 

performs. 

4.3. Implementation Details 

All the experiments have been implemented in a single NVIDIA Tesla P100 GPU, and the CUDA edition 

is 9.0. In addition, the implement ed framework is based on Pytorch 1.1.0 and torchvision 0.3.0 The initial 

learning rate is set to 0.0002. Besides, batch size of training and testing is set to 36. All the experiments are 

trained in 200 epochs. 

We center-cropped images of datasets to size 128128 because of the limitation of hardware memory. the 

input image uses bilinear interpolation while the ground truth label uses nearest interpolation. In addition, we 

normalize the resized images by the value of mean and standard deviation. Then we randomly flip images and 

labels vertically and horizontally. This step is only operated for training, not including validation and testing. 

In each training epoch, we fix the segmentor 𝑆 and train the critic 𝐶 firstly, then fix 𝐶 and train 𝑆. Each 

step uses gradients obtained by the loss function mentioned above. Robustness of the whole network can be 
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enhanced during the training process. As the process moves on, the results predicted by the segmentor become 

more and more similar to the corresponding ground truth label map. 

4.4. Results and Analysis 

4.4.1.  Comparison with Baselines 

Each comparison based on different datasets includes three models: 

• U-Net [5] is an encoder-decoder network based on FCN. It concatenates features on the channel 

dimension. 

• U-Net++ [27] is a deeply-supervised encoder-decoder network where the subnetworks are connected 

through a series of nested, dense skip pathways. 

• SegAN [8] is constructed with the structure resembling U-Net. It also uses the concept of adversarial 

learning to segment medical images. 

• Our AM-AN is an end-to-end adversarial network based on attention mechanism and pixel-wise loss 

functions. Our attention module includes both channel attention and spatial attention. 

In Table 1, we compare our model to other models on two public datasets, PROMISE12 and DSB2018. 

The third column represents the Dice-score of different methods. The forth column represents the mIoU-score 

of different methods. The Dice-score and the mIoU-score of our model is larger than those of other three 

models. Compared to the result of SegAN on PROMISE12 dataset, Dice-score of our model has an increase 

of 1.9% while mIoU-score has an increase of 1.8%. Compared to the result of SegAN on DSB2018 dataset, 

Dice-score of our model has an increase of 1.2% while mIoU-score has an increase of 0.9%. Our network has 

a better performance than networks using other methods. The metrics of our module are larger than those of 

other modules, representing the predicted segmented result is more similar to the ground truth label. Besides, 

significant information of the prostate image and the cell nuclear region has been preserved well because of 

the proposed attention module, and pixels have been precisely classified due to the pixel-wise loss functions.  

In Table 2, the comparison is based on the lung nodule dataset. The form of Table 2 is the same as Table 

1. In addition, the comparison is also made on the four models. In Table 2, the Dice-score and mIoU-score of 

our network are higher than those of other models as well. Compared to the result of SegAN, Dice-score of 

our model has an increase of 3.0% while mIoU-score also has an increase of 3.0%. Therefore, our network 

also performs better on the lung nodule dataset. Besides, Dice-score and mIoU-score of results on the lung 

nodule dataset are lower than those results on PROMISE12 and DSB2018. Because number of pixels 

belonging to the background are much larger than that belonging to the segmented region in the lung nodule 

dataset. It makes the segmentation task of lung nodule more difficult. 

Table 1: Comparison between different models on two public datasets 

Dataset Model Dice mIoU 

PROMISE12 

U-Net 

U-Net++ 

0.865 

0.884 

0.864 

0.887 

SegAN 0.882 0.879 

Our model 0.899 0.895 

DSB2018 

U-Net 

U-Net++ 

0.909 

0.916 

0.904 

0.912 

SegAN 0.913 0.913 

Our model 0.924 0.921 
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Table 2: Comparison between different models on the lung nodule dataset 

Dataset Model Dice mIoU 

Lung nodule 

U-Net 

U-Net++ 

0.713 

0.729 

0.664 

0.698 

SegAN 0.734 0.701 

Our model 0.756 0.722 

 

4.4.2. Ablation Study 

In ablation study, we present a further experiment that support our proposed network structure and pixel-

wise training loss functions. This experiment is based on the three datasets as well, including two public 

datasets and the lung nodule dataset. The results of comparison based on two public datasets are displayed in 

Table 3. The comparison contains three cases. The first one is that only the proposed attention module is added 

to the adversarial network. The second case is that only the pixel-wise loss functions, which include multi-

scale loss and binary cross entropy loss, are employed to the adversarial network.  

The table demonstrates that not only the attention module but also the loss functions have an increase of 

Dice-score and mIoU-score. Compared to the baseline on PROMISE12 dataset, Dice-score of the module with 

proposed attention module has an increase of 1.2% while mIoU-score has an increase of 1.1%. Compared to 

the baseline on PROMISE12 dataset, Dice-score of the module with pixel-wise loss functions has an increase 

of 0.9% while mIoU-score has an increase of 1.3%. Compared to the baseline on DSB2018 dataset, Dice-score 

of the module with proposed attention module has an increase of 0.7% while mIoU-score has an increase of 

0.4%. Compared to the baseline on DSB2018 dataset, Dice-score of the module with pixel-wise loss functions 

has an increase of 0.4% while mIoU-score has an increase of 0.4%.  

The increase brought by attention module is usually larger than that brought by the proposed loss functions. 

According to the results, the proposed attention module is crucial for the segmentor to segment images more 

precisely. Besides, the proposed loss functions help the network extract hierarchical features and make the 

classification of each pixel more precise. A conclusion can be drawn that both attention module and loss 

functions have effectively improved the performance of our model. 

In addition, the results of comparison based on the lung nodule dataset are displayed in Table 4. Compared 

to the baseline, Dice-score of the module with proposed attention module has an increase of 1.9% while mIoU-

score has an increase of 1.5%. Compared to the baseline, Dice-score of the module with pixel-wise loss 

functions has an increase of 1.7% while mIoU-score has an increase of 2.3%. The table also proves that both 

attention module and pixel-wise loss have a good effect on the task of segmenting medical images. 

Table 3: Ablation study on two public datasets 

Dataset Method Dice mIoU 

PROMISE12 

SegAN 0.882 0.879 

+AM 0.893 0.889 

+ pixel-wise loss 0.890 0.891 

+AM+ pixel-wise loss (our model) 0.899 0.895 

DSB2018 

SegAN 0.913 0.913 

+AM 0.919 0.917 

+ pixel-wise loss 0.917 0.916 

+AM+ pixel-wise loss (our model) 0.924 0.921 
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Table 4: Ablation study on the lung nodule dataset 

Dataset Method Dice mIoU 

Lung nodule 

SegAN 0.734 0.701 

+AM 0.748 0.713 

+ pixel-wise loss 0.745 0.717 

+AM+ pixel-wise loss (our model) 0.756 0.722 

 

Besides, we verify whether the proposed attention module is light-weight. As shown in Table 5, the number 

of parameters in our model is almost the same as that of other methods. Apart from the parameters, GFLOPs 

of our model also has a negligible increase. These metrics are barely changed when our attention module is 

added. Therefore, a conclusion can be drawn that the proposed attention module is quite light weight and do 

not increase the overhead of computation and parameters in our network. 

Table 5: Comparison of the overhead of different methods 

Method Parameters GFLOPs 

SegAN 156.27M 18.90 

+channel 156.42M 18.91 

+channel +spatial (our model) 156.42M 18.91 

 

5. Conclusion 

We present a novel method for segmenting medical images, which performs better comparable to other 

methods. We demonstrate how this method employs the adversarial learning and attention mechanisms to 

generate predicted results that resemble the corresponding ground truth labels. The employed attention module 

can enhance the ability of extracting features of input images. More than that, it does not increase the cost of 

computation and the number of network parameters because it is light-weight. Moreover, results on datasets 

prove that our pixel-wise loss functions have a positive effect on segmenting. 

The experiment in our work shows that our method possesses a higher accuracy than others on three 

different medical datasets. In our work, the limitation is that the quantity of data in datasets are not large enough. 

In the future, our method can be extended to other 3D multi-modal segmentation tasks with data augmentation 

using learned transforms.  
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