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Abstract. In order to fulfill the maintenance and support task of adaptive Augmented Reality (AR) in 
complex situations such as environmental changes and product mobility in industrial scenarios, an augmented 
reality assembly guidance method based on situation awareness is proposed. Firstly, the digital twins 
corresponding to the physical model are constructed based on the digital twin technology to map the data and 
information of the entity in real-time. Secondly, the AR equipment is reconstructed to have the ability of 
deep environmental awareness in order to achieve accurate three-dimensional registration. Finally, situation 
awareness is realized by multi-sensor fusion, and the information guide is enhanced by fusion for the change 
of external environment and equipment status. The experimental results show that the augmented reality 
assembly guidance system based on the concept of digital twin can effectively perceive the external abnormal 
environment changes and the position and posture of components. According to the corresponding situation, 
adaptive trigger augmented reality information push, the real-time frame rate in the process of augmented 
reality guidance can reach 60 FPS. 
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1. Introduction
Maintenance support is an important means to restore and maintain equipment performance. As a

complex optical-mechanical system, the assembly process of equipment is designed with thousands of parts, 
fixtures, measuring tools and assembly operations. Augmented reality assembly instruction is augmented 
reality[1][2][3] is introduced into the virtual assembly system, through the real environment as the 
background, the assembly not only realizes the person and the real part of interaction, at the same time 
enhances the users perception of assembly instruction information[4][5], augmented reality assembly 
instruction can greatly improve the efficiency of assembly, improve the quality of security. However, in the 
complex environment, the traditional augmented reality assembly guidance could not perceive the state 
information of the assembly parts, and could not make corresponding measures for the changes in the 
external environment. Situational awareness is an environment-based, dynamic and holistic ability to 
perceive risks[6][7], which is based on information data and achieves the purpose of decision-making or 
action through acquisition, understanding, reality, and prediction. In this paper, the traditional augmented 
reality assembly guidance cannot accurately perceive the external environment and the state of components, 
and the traditional augmented virtual CAD (Computer-Aided Design) model information cannot be changed. 
This paper proposes an augmented reality technology based on the combination of situational awareness and 
digital twin technology of multi-sensor fusion. This method aims to carry out CAPP (Computer Aided 
Process Design) under the digital twin environment[8][9], plus multi-sensor fusion interaction algorithm to 
achieve the situational awareness of the device, and to implement adaptively triggered augmented reality 
based on changes in the environment and its state Guidance on assembly information. 
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2. Capp Design Based on Digital Twin 

2.1. Application of CAPP in Process Manufacturing 
Computer-Aided Process Planning (CAPP) is the application of information technology in the field of 

product manufacturing Process design. As one of the core contents of digital manufacturing technology, it is 
the bridge and link connecting CAD and CAM, as well as the important prior guiding knowledge for 
equipment maintenance [10]. In recent years, CAPP has made certain developments in the field of 
intelligence: for example, Kang et al.[11] used ontology technology to model process knowledge, established 
an ontology-based process decision expert system, and realized automatic selection and sequencing of 
processing methods for processing features; Huang Rui et al. [12] proposed the feature-level process design 
reuse of parts driven by 3D CAD model retrieval from the perspective of process reuse. However, at this 
stage, there are still two major problems in the application and development of CAPP. First, the traditional 
CAPP system is still a static machining process solution. That is after the design process ends, its 
corresponding CAD model is solidified, and it is impossible to achieve the actual disturbance Factors to give 
feedback; Secondly, a large amount of data existing in design and production cannot be fully utilized. 

To sum up, process design, as a key link in the manufacturing of mechanical products, is inseparable 
from the decision-making, reasoning and optimization process of the whole product life cycle data, so how to 
manage and utilize the model information is particularly necessary. 

2.2. Design of 3D Process System For Digital Twins 
Aiming at the problems of traditional CAPP, this article intends to use digital twin technology as an 

improvement. On the basis of traditional CAPP, in order to meet the process design needs in the digital twin 
environment, this paper proposes the overall framework of a three-dimensional process design system in the 
digital twin environment to realize the external information of physical entities. The design process is shown 
in Fig. 1. 
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Fig. 1: CAPP design in digital twin environment 

CAPP under the digital twin environment design innovates the digital twin which is different from the 
previous static model. Table 1 summarizes the similarities and differences between the digital twin and the 
traditional CAPP design. 

Table. 1: Comparison of differences between digital dialysis organisms and traditional CAD models 

Innovation points Subhead Product digital twin Traditional CAPP design 
Design method Collaborative design of physical and virtual fusion Designing in a virtual environment 
Driving method Twin data-driven Prior knowledge-driven 

Data management phase Product design, manufacturing, maintenance, and 
other life cycle stages Focus on the product design stage 

interactive mode Twin data interaction Offline interaction 

Ways of identifying Real data simulation verification Trial production of small-batch 
products 
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3. Situational Awareness of Multi-sensor Fusion Algorithm 

3.1. Multi-Sensor Fusion System Composition 
In this paper, the situational awareness of the system is realized through the embedded IOT sensors in 

the CAPP phase of digital twin guidance and multi-sensor fusion analysis and processing information. The 
multi-sensor fusion framework is shown in Fig. 2. 
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Fig. 2: Multi-sensor fusion for situational awareness 

This article first uses data twinning technology as a guide at the equipment component stage, and 
completes data acquisition through pre-embedded IoT temperature and humidity sensors, Microsoft 
HoloLens augmented reality headset and Intel® RealSense. Then, the improved point cloud KLD particle 
filter algorithm is adopted for object 6-DOF perception and tracking. Finally, the ability of situational 
awareness is achieved by combining temperature and humidity sensors and prior knowledge. The scene 
recognition diagram is shown in Fig. 3. 
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Fig. 3: Situational awareness diagram 

4. Situational awareness guided by prior knowledge 

4.1. Active Perception Based on Visual Data 
As traditional MEMS acceleration sensor (such as gyro, accelerometer) can only get the object position 

information and unable to get space, the real goal is portable high-precision depth camera Intel RealSense 
sensors components as external visual information in the space of real-time 6-DOF and real-time six degrees 
of freedom of the acceleration value. 

This paper proposes to use an improved KLD particle filter algorithm to obtain the real-time 6-DOF 
attitude of the target, where KLD is Kullback-Leibler divergence, also called relative entropy. It can describe 
the difference in distribution between the two probabilities. It mainly measures the certainty of the posterior 
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probability distribution in the particle filter algorithm. The method of dividing into different small regions 
can be used to discretize the posterior probability density distribution of particles. Suppose there is a vector  

1( , , )kX X X= ⋅⋅⋅ Represented as the number of sampled particles in some different regions, then obey the 
polynomial distribution = ultinomial ( , )kX M n p  among them 1, , kp p p= ⋅⋅⋅ ，Represents the probability of 
sampling into each region. According to statistical principles, The maximum likelihood estimate of p  is ，
The likelihood statistic for test p  is 1p̂ n X−= ： 
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It p is a true posterior distribution, when n →∞  , Likelihood ratio converges to 2χ distribution: 
                                                            2

12 log n kdl χ −→                                                                                           (2) 

Then the cumulative sum of the right term of Eq. (1) is the relative entropy of the maximum similar then 
posterior distribution and the true posterior distribution. Then the relationship between the probability that 
the Kullback-Liebler distance is less than ε  and the number n  of samples drawn from the posterior density 
is: 
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Since the 2χ distribution quantile is: 
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Then, Wilson-Hilferty transformation is adopted to simplify the operation: 
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Where 1z δ−  represents the upper bound of the quantile of  1 δ−   in the standard normal distribution, The 
KL distance of the number of particles required by the t-step filter is inversely proportional to ε  and 
proportional to the threshold value ∆  of the small region. 

Based on adaptive particle filter algorithm based on prior knowledge to guide track of improved, with the 
first frame point cloud into early recognition and registration of 6-DOF as tracking template, will initialize 
the particle distribution is based on the CAD model of the prior knowledge , thereby greatly reducing the 
tracking process of initialization time so as to improve the accuracy of the initial tracking, algorithm diagram 
as shown in Fig. 4. 
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Fig. 4: Particle filter tracking algorithm guided by prior knowledge 
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4.2. Multi-Sensor Data Fusion Processing 
Multi-sensor collaborative operation has significant advantages in fault tolerance, complementarity, real-

time and other aspects. However, since the state transfer threshold of different components is different, the 
actual measurement alarm threshold is introduced as the prior reference value. Taking a single-input single-
output sensor as an example, taking a certain sensor as an example, assuming that the input quantity is x (t), 
the noise is N (t), and the output quantity is represented by y (t), then the differential equation can represent 
the dynamic characteristics of the sensor[13]: 
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Among them 0a , 1a na , 0b , 1b , mb , 0c , 1c pc  are the coefficient. When the threshold of a single sensor 
is selected, a critical threshold with 1

aT  slightly smaller danger threshold is taken as the trigger threshold, 
when 1 0
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Where 1−∑  represents the covariance matrix of the vector, then the dangerous state score is: 
                                       = (( ,0), ) (( ,0), ) (( ,0), )M a M b M cR D T D T D T× ×0 0 0                                                             (12) 
Where a b cT 、 、  is the threshold value of different sensors [15] Its flow chart is shown in Fig. 5. 
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Fig. 5: Multi-sensor fusion data processing flow 

4.3. Situational Awareness and State Decision Based on Prior Knowledge Guidance 
After multi-sensor fusion, the system has acquired the ability to perceive the external environment and 

its own state, so the decision making under different environments and states becomes particularly important. 
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Where  iω is the weight of a single sensor, tv is the actual measured value, X is the historical average 
value of the sensor, and X s is the standard deviation of the historical data collected by the 
sensor[14]. Considering that the numerical weight of different sensors will be affected by dimension, that 
is, the weight scale is different, this paper intends to use Markov distance to adjust the weight a, b are 
members of two different vectors：



The perception and prediction in different states can be regarded as a series of discontinuous states, so the 
finite state automata can be used to establish a discrete mathematical model to represent the behavior of 
migration between these states. The decision finite state machine can be expressed as: 0t T∈ is the initial 
state, and F T⊆  is the final state. Where T  is the set of all states in the state machine; E  is the set of 
acceptable inputs between states (that is, the trigger conditions for state transition); δ is the state transfer 
function, expressed as :T E Tδ × → ; The finite-state automaton decision diagram is shown in Fig. 6. 
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Fig. 6: Finite-state automaton decision diagram 

0a 、 0b  、 0c  represents the historical measurement average value of the sensor,  1a 、 2a represents the 
fire and low-temperature early warning threshold,  1b 、 2b  represents the wet and dry early warning 
threshold, and 1c 、 2c  represents the collision motion early warning threshold. 

5. System Implementation 

5.1. Experimental System Setup 
This article incorporates the concept of digital twins and considers the embedded sensor during the 

component-aided design stage. The comparison of the CAD model design schematic with the real production 
component is shown in Fig. 7. 

Embedded 
processor

Digital twin Physical entity  
Fig. 7: Model design incorporating digital twin concepts 

The IoT low-power sensor has a built-in lithium battery, and its sensing capability is parameterized as 
follows: 

Table. 2: parameters of embedded sensors 
Measurem

ents Measuring range error 

Temperatu
re -20°C~60°C 0.5± °C 

Humidity 0%~~100% 2± % 
Air 
pressure 300hpa~1100hpa 50±  hpa 
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This article uses Microsoft HoloLens augmented reality headset as the basic hardware of the experiment. 
In order to realize accurate real-time six-DOF sensing of components, Intel RealSense is used as an external 
high-precision 3D vision sensor. Its design and physical matching are shown in Fig. 8. 

  
   

   
    

    
Fig. 8: Model design incorporating digital twin concept 

The complete augmented reality maintenance in-duction system also includes a mini-host for real-time 
information processing and an independently powered portable power supply, as shown in Fig. 9. The mini-
host is responsible for processing all sensor data and status information decision-making, and communicating 
with the HoloLens helmet in real-time via UDP/TCP for 6-DOF and warning status. 
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Fig. 9: Structure diagram of AR maintenance induction system 

In different stages of the visual perception of the experiment, result is shown in Fig. 10 and figure a for 
visual perception capture process, figure b said prior knowledge to guide the parts identification, figure c said 
after identification of 3d virtual prototype model and entity model, figure d said in part moves for the capture 
of the real-time status, redpoint for tracking particles in the component state, blue model for virtual assembly 
model. Visual information processing uses OSG(OpenSceneGraph) as the graphics rendering and processing 
engine, combined with the PCL point cloud library for 3D point cloud recognition and registration, and then 
fuses the prior model with the real thing. 
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Experiments show that the part identification is accurate and the model registration effect is obvious, 
which can effectively guide practitioners to understand the physical state information, and the real-time 
assembly instruction in HoloLens can reach the frame rate of 60fps. 

5.2. Augmented Reality Induction Under Situational Awareness 
At the beginning of the task, the real-time position of the part in space was obtained through visual 

perception, accurate 3D assembly guidance information was superimposed according to the state of the part, 
and complete process animation was pushed forward in front of the field of vision, so as to guide the staff to 
complete the assembly induction task according to the state of the part assembly. The device's own state 
perception and its augmented reality assembly guidance effect are shown in Fig. 11. 
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Fig. 11: Self-awareness and enhanced information guidance 

In the fault maintenance detection task, the component senses the external temperature, humidity, and air 
pressure in real-time through its own sensor, determines the fault status based on the trigger threshold, sends 
a fault warning to the system when the external temperature is abnormal, and detects different fault codes 
based on the real-time status, The corresponding guidance information and operation process are 
holographically projected onto the physical entity, and the maintenance staff completes the troubleshooting 
according to the troubleshooting content until the equipment detection environment returns to normal. The 
situational awareness and warning effects of simulated external conditions are shown in Fig. 12. 
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Fig. 12: Situational Awareness and Information Decision 

6. Conclusion 
Aiming at problems such as the weak perception of changes in the external environment and its own 

state in augmented reality applications, and augmented reality situation awareness system that incorporates 
the concept of digital twins is proposed. Through multi-sensor fusion and digital twin information interaction, 
abnormal changes in the external environment and changes in its own state. The perception and decision-
making have laid a certain foundation for the maintenance support of augmented reality in complex scenarios. 
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In the future, we can continue to improve the robustness of the system under complex scene changes to make 
it more complete. 

7. Acknowledgment 
The work in this paper was supported by the National Natural Science Foundation of China (# U1433106, 

#61603344) and the Aviation Science Foundation of China(2018ZC41002). 

8. References 
[1] Caudell T, Mizell D. Augmented reality: an application of heads-up display technology to manual manufacturing 

processes[C].//Proceedings of the 25th Hawaii International Conference on System Sciences. Los Alamitos: IEEE 
Computer Society Press, 1992: 659-669. 

[2] Gao Xiang, Hui Chen, Wei Pan,Zhi geng. A Survey on Mobile Augmented Reality Visualization [J]. Journal of 
Computer-Aided Design and Computer Graphics,2018,30(01):1-8. 

[3] Ren D, Goldschwendt T, Chang Y, et al. Evaluating wide-field-of-view augmented reality with mixed reality 
simulation[C].//Proceedings of the IEEE Virtual Reality. Los Alamitos:IEEE Computer Society Press, 2016: 93-
102. 

[4] Research on Auxiliary maintenance system of aircraft engine based on augmented reality [J].Science and 
Technology Innovation Herald,2019,16(06):16-18. 

[5] XU Yi-da. Research on fault diagnosis and maintenance technology of civil aircraft assisted by augmented 
reality[J]. Science & Technology Vision,2018(17):7-8. 

[6] Qu Yang.Marine Environmental data management and Military Applications[J]. Electronic Technology & 
Software Engineering,2019(14):171-172. 

[7] Cao guoxi.Research on evaluation system for UAV operator situation awarness[D].Beijing University of Posts and 
telecommunications,2019. 

[8] LI kai, Qiao hao,Gong Mengyao Wang Xiaolei. Digital Warship and its Application Exploration Based on Digital 
Twin Technology[J]. Ship & Boat,2018,29(06):101-108. 

[9] Tao Fei, Cheng Ying, Cheng Jiangfeng, Zhang Meng, Xu Wenjun, Qi Qinglin. Theories and technologies for 
cyber-physical fusion in digital twin shop-floor[J]. Computer Integrated Manufacturing 
Systems,2017,23(08):1603-1611. 

[10] YuYong, Hu Deyu, Dai Sheng, Zhao Gang. Study on Application of Digital Twin in Process Planning[J]. 
Aeronautical Manufacturing Technology,2018,61(18):26-33. 

[11] Kang M，Kim G , Lee T, et al. Selection and sequencing of machining processes for prismatic parts using process 
ontology model[J].International Journal of Precision Engineering and Manufacturing, 2016, 17(3): 387-394. 

[12] Huang Rui, Zhang Shengheng, Bai Xiaoliang, Zhang Congcong, Zhang Ximao. 3D CAD Model Retrieval Driven 
Rapid NC Programming Method for NC Process Reuse[J]. Journal of Mechanical Engineering,2014,50(03):191-
198. 

[13] Zhao Yuesheng.MEMS Bionic Individual Based on Prior Knowledge, Real-time Situation Awareness and 
Interactive Learning[D].Tsinghua University,2013. 

[14] Hu Zhenyu. Analysis of Photoelectric Multi-sensor Information Fusion Technology Based on Target 
Recognition[J]. China Computer & Communication,2019(11):139-140. 

[15] Sun Xiaoli. Application of multisensor information fusion in robotics[J]. Wireless Internet 
Technology,2018,15(02):130-131. 

 

173


