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Abstract. As the main tool of water transportation, the safety and stability of ship operation play a crucial 

role in the water transportation industry. However, the existing fault diagnosis methods of ship equipment 

cannot meet the real-time diagnosis of multiple equipment, to avoid the subjectivity of manual feature 

extraction and meet the real-time diagnosis of ship faults, designs a real-time fault diagnosis method for ships 

based on the fusion of convolutional neural network and recurrent neural network in this paper. This method 

directly inputs the raw data from multiple sensors in a certain window into the network after correlation 

processing, automatically extract features by convolutional neural network and complete fault diagnosis by 

recurrent neural network. Experimental results show that this method does not require manual extraction of 

data features, and its fault diagnosis accuracy is high and the response time is short. Therefore, the method 

proposed in this paper can be applied to the real time fault diagnosis of ships. 

Keywords: real-time fault diagnosis of ship faults, convolutional neural network (CNN), recurrent neural 

network (RNN). 

1. Introduction  

Due to the large number of ship equipment and the complicated operating environment, the probability of 

equipment failures is greatly increased. If equipment failures cannot be found in time, it will bring great danger 

to the ship's navigation. Fault diagnosis is of great significance to ship health management through fault 

detection and fault identification [1]. Effective fault detection can improve the safety of ship, so it is necessary 

for real-time online fault diagnosis of ship equipment. 

Traditional fault diagnosis methods adopt manual feature extraction, relying on signal processing skills 

and expert experience, which is labor-intensive and time-consuming. The problem of manual feature extraction 

can be solved by using deep learning method to automatically complete feature learning and fault classification. 

Yang et al. [2] proposed a fault diagnosis scheme combining hierarchical symbol analysis and convolutional 

neural network, realized automatic learning of features by using the simplified network structure, and verified 

its effectiveness in different operating conditions and even different devices. Xu et al.  [3] proposed a bearing 

fault diagnosis method based on multi-level features of wavelet transform, CNN and RF, and verified that the 

method has little impact on the classification accuracy of training and test sets with different feature 

distributions. Jiang et al. [4] proposed a new multi-scale convolutional neural network (MSCNN) structure, 

which simultaneously carried out multi-scale feature extraction and classification, and verified the superiority 

of this method for WT gearbox fault diagnosis. S.Udmale et al. [5] proposed a new method for fault 

classification of rotating machinery based on kurtogram and convolutional neural network, and verified that 

the method can effectively classify bearing faults under different working conditions. However, due to the 

numerous sensors that collect the operating status of ship equipment and the time-sequential of the collected 

data, these methods can not meet the requirements for real-time diagnosis of ship equipment faults. 

 
+  Corresponding author. Tel.: + 15651016661; 

E-mail address: 1056532596@qq.com 

ISBN 978-981-14-4787-7 

Proceedings of 2020 the 10th International Workshop on Computer Science and Engineering  

(WCSE 2020)  

 

70

Shanghai 19-21 June  2020 pp 70-75
doi: 10.18178/wcse.2020.06.012



Aiming at the problems of time-consuming and labor-intensive of manual feature extraction, and the 

timing of signals is not fully utilized in the traditional fault diagnosis using CNN technology, combining with 

the characteristics of multiple vibration signals generated by a ship at a certain time, a ship fault diagnosis 

method based on the fusion of CNN and RNN is proposed. The proposed method can avoid the subjectivity of 

manual feature extraction and meet the real-time diagnosis of ship faults. After comparative experiments, it is 

found that this method performs well in timeliness and has a high accuracy rate. 

2. Proposed Method 

2.1. Real-time Diagnosis Process of Ship Fault 

The process of ship fault diagnosis in this paper: Firstly, obtain the raw data collected by multiple sensors 

with a sliding window. Secondly, perform correlation analysis on the raw data of multiple sensors in the 

window to enhance the relationship between attributes. Thirdly, use the multi-sensor raw data in the window 

after correlation analysis as CNN input, and extract features automatically. Fourthly, rearrange the obtained 

feature sets to obtain the comprehensive feature vectors in the same period. The comprehensive vectors 

maintain the original relative chronological order, and then take these new vectors as RNN input. Lastly,train 

the comprehensive feature data using RNN and complete fault classification. 

2.2. Ship Fault Correlation Processing 

There is some correlation between attributes monitored by the ship's multiple sensors. If the raw data of 

multiple sensors is used directly, the correlation information between attributes will be lost. To overcome this 

problem, this paper uses the historical data of ships to obtain the correlation matrix between attributes, which 

can characterize the relationship between attributes. Correlation processing steps are as follows:   

• 1 2( , , , ) ( )m ij n mX X X X x = =   represents historical data of multiple sensors in a selected time period,

m  is the number of sensors, n is the length of the selected historical data, ijx represents the record value 

of the j -th attribute at the i -th time and generally n m . 

• Suppose 1 2( , , , )T

i i i niX x x x= , 1 2( , , , )T

j j j njX x x x= ,the correlation between them can be expressed as: 
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Where ix  and jx  represent the average of attribute 
iX  and attribute jX , respectively [6].  

• By calculating the correlation matrix M of X  is: 
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• The ship multi-sensor raw data is divided into time segments of window size, and the number of time 

segments is calculated according to equation (3). 
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Where LS  is the sequence length of the multi-sensor raw data, LW is the length of the sliding window,

SW  is the step length of the sliding window [7]. 

• The raw data of multiple sensors in each window is a multivariable time series with a size of LW m . 

The multivariate time series in the window is denoted as ( 1, 2, , )i NQ i W=  , iQ  at this time can reflect 

the timing of the raw data of a single sensor, but cannot reflect the correlation between the attributes of 

multiple sensors. Then, iQ   is subjected to correlation processing according to equation (4). 

 i iP=Q M   (4) 
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Where 
iP  represents the multivariate time series after correlation processing, which not only reflects 

the timeliness of multi-sensor raw data, but also the relevant information between the attributes of the 

multi-sensors. 

 

2.3. Ship Fault Feature Extraction 

The raw data collected by the ship's multiple sensors in a certain window after correlation processing is 

transformed into a multivariate time series 
iP , which is used as an input X  of the convolution layer. The size 

of 
iP  is 

LW m  and the number of channels is 1. The convolutional layer introduces multiple convolution 

kernels to extract ship fault features. Different convolution kernels extract different fault features [8]. If 

multiple convolution kernels are combined, a comprehensive ship fault feature extraction can be achieved. 

Suppose there are n  convolution kernels of size k m , with a step size of s , and a zero-padding operation is 

performed. Note: The values of n  convolution kernels are different, but the width of the convolution kernel is 

the same as the width of the input X . In this way, the input variable X  can be transformed into a one-

dimensional(1-D) feature map after a convolution layer operation. The size of the 1-D feature map is 

1 1LW Padding k

s

+ − 
+  

 
. The convolution layer convolves the local area of the multivariable time series X  in the 

window with a series of convolution kernels that extract different fault features of the ship to generate a new 

set of feature maps .A convolution operation of the convolutional layer is shown in Figure 1. 

 

Fig. 1: Convolution operation of a convolution kernel 

Different feature maps in Figure 2 represent the results obtained by using different convolution kernels. 

Boxes of different colors in each feature map represent the results of feature extraction at different time periods. 

Boxes of the same color of different feature maps represent different results obtained by the convolution 

operation in the same time period. The learned 1-D feature map containing different fault features of the ship 

is rearranged to obtain the comprehensive vector of ship fault features in the same time period, and then arrange 

according to the time sequence of comprehensive vector. The number of comprehensive vectors is equal to the 

number of 1-D feature maps 1LW Padding k

s

+ −
+ , and the length of each comprehensive vector is equal to the 

number of filters n . Each sequence in the Window feature sequence actually corresponds to the raw sequence 

in the sliding window, maintaining the original relative time order, but just performing a convolution operation 

in the middle to take these new vectors as the input of RNN. 
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Fig. 2: Network structure of ship fault feature extraction 

2.4. Ship Fault Diagnosis 

The recombined comprehensive feature vector maintains the original relative order and has time sequence. 

At the same time, the front and rear data of ship equipment are interdependent [9]. In Figure 3, set the red 

collection as 
1tx −
, the green collection as 

tx , and the blue collection as
1tx +
. In the RNN structure, the input at 

the current moment not only has 
tx  from the input layer, but also a hidden layer state 

1ts −
 that provides the 

previous moment. The RNN processes each comprehensive vector, and stores the current corresponding 

information in its interior. In the structure proposed in this paper, RNN does not make a decision for each 

comprehensive feature vector, but processes the information corresponding to all the comprehensive vectors 

as a whole to classify the entire event. Therefore, RNN proposed in this paper only has an output at the last 

moment. The output 1 2( , , , )rO O O O=  is a probability vector, and r  is the number of failure categories 

(including normal states). ( 1, 2, , )iO i r=  represents the probability that the multivariable time series fault 

diagnosis result of this window is the fault of type i . The fault category is the category corresponding to the 

component with the largest probability value in O . 

 
Fig. 3: Network structure of real-time fault diagnosis of ships 
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3. Experiment 

Aiming at the real-time operating status of a ship's equipment, the normal operation of the system and 

seven other fault conditions (main diesel engine failure, auxiliary diesel engine failure, boiler failure, air 

compressor failure, hot oil heater failure, oil purifier failure, and exhaust gas boiler failure) were selected. In 

order to facilitate computer processing, we use 0, 1, 2, 3, 4, 5, 6, and 7 to represent the eight operating states 

of the ship system. The number 0 represents the normal state, and so on. A sliding window with a length of 80 

is used and the sliding distance of the window is set to 1 to meet the real-time nature of ship fault diagnosis. 

Each failure state collection contains 4000 samples, of which 3000 samples are used as training data and 1000 

samples are used as test data. 

The method proposed in this paper converges fast on the training set. After 10 rounds of iterations, the 

training accuracy is about 100% and the loss is about 0.001. As can be seen from Figure 4, in the test set, the 

fault diagnosis accuracy of ships in normal state is 99.4%, while the fault diagnosis accuracy of main and 

auxiliary diesel engines is slightly lower, because there is a strong connection between them, and the fault 

diagnosis effect of other states is also better. According to Table 1, the SVM fault diagnosis scheme has great 

advantages in time, but the accuracy rate is low. The accuracy rate of fault diagnosis of ship equipment using 

RNN alone is lower than that of using CNN alone, because RNN cannot automatically extract fault features 

and needs to be manually extracted. The quality of the extracted features affects the accuracy of diagnosis. 

However, because the data collected by the ship is time-series, the advantages of RNN processing time-series 

data are reflected in the time response. The diagnostic method proposed by S.Udmale and Zhang has high 

accuracy, but it also has a long response time, so it is not suitable for real-time fault diagnosis of ships. The 

fault diagnosis method proposed in this paper is slightly lower in accuracy than the fault method proposed by 

S.Udmale, but the response time is much shorter than the fault method proposed by S.Udmale, which is the 

shortest response time among the compared methods. The ship fault diagnosis method proposed in this paper 

has a test accuracy rate of up to 98.41%, and the average response time of each test sample is about 16.4ms, 

which meets the requirements of real-time online fault diagnosis. 

In this paper, the multi-sensor raw data in the window is correlation processed firstly and then directly 

used as the input of the network to automatically extract the fault features without manual intervention. The 

difficulty of network training is low and the diagnosis effect is good, and it has achieved good results in ship 

fault diagnosis experiments. The response time has obvious advantages over several other fault diagnosis 

methods. The test results of each sample only take about 16.4ms, which can meet the real-time online diagnosis 

requirements and guide the fault maintenance strategy of a ship in the working state in time. 

 

Fig. 4: The confusion matrix on the test set 
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Table 1: Comparison of the diagnostic results of the test set using different methods 

 

4. Conclusion 

In this paper, aiming at the demand of real-time fault diagnosis of ship, combined with the advantages of 

CNN and RNN, the fusion technology of CNN and RNN is proposed for fault diagnosis of ships. This method 

closely correlates the ship's multi-feature parameters through correlation processing, then uses CNN to 

automatically extract ship fault features, next uses RNN to find temporal features, and finally performs fault 

classification. It is verified by experiments that the diagnostic model proposed in this paper has a good effect 

in the classification of ship fault diagnosis, and the time response is fast, which can meet the needs of real-time 

ship fault diagnosis. 

On the other hand, there is a certain coupling relationship between some ship fault instances. So, if a failure 

of the ship is found, other related equipment should be tested. Therefore, the further work can be to use the 

association rule mining algorithm to avoid secondary diagnosis and localization of the fault and save a lot of 

fault diagnosis costs. 
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