
Enhancing Online Collaborative Filtering by Integrating Social
Network

Shaobin Lu
1
, Guilin Li

2



1
 Xiamen University, Xiamen, China

2
 Research Center on Mobile Internet Technology, Software School of Xiamen University, Xiamen City,

361024, China

Abstract. In recent years, researchers have done a lot of work to enhance online collaborative filtering

(OCF) performance. Compared to most of the offline collaborative filtering (offline CF), the online

collaborative filtering algorithm has three advantages: the low cost of retraining the model, dynamically

tracing the user behavior habits and capturing the change of the item popularity. Many OCF algorithms

extract user interests and item popularity features by updating algorithms model in time. But most of OCF

ignore the similarity of users or items by updating all users’ features or all items’ features. In this study, we

aim to integrate social network to improve the OCF performance. In order to achieve the goal, we propose

two new methods by introducing user similarity which obtains from user social network to online

collaborative filtering based on the Probabilistic Matrix Factorization (PMF) frame. One of the methods,

which we called OCFUSim_I, is to calculate the similarity of users and find the neighbors of user, then

adding the neighbors to the OCF. Another method, called OCFUSim_II, is to add similarity among users to

OCF model. We conduct the experiments on three public datasets: MovieLens100K, MovieLens1M and

HetRec2011 datasets. The experimental results show that our algorithms achieve better performance than

several baseline approaches.

Keywords: Online Collaborative Filtering, Social Network, User Similarity, Recommend System

1. Introduction
With the rapid explosion of big data, all trades and professions have accumulated of sufficient

information and data. Now, more and more scientific and technical corporations adopt recommendation

technology to help user make quick and reasonable decisions. So, it is getting more and more important for

recommend system to precisely predict users’ interest and behavior [1].

The most significant algorithms to make more precise predict is collaborative filtering (CF). The CF

model mainly predict the rating of user on items by matrix factorization (MF) [2]. The key idea of the MF

model is to decompose the rating matrix into user features matrix and item features matrix. Of course. With

the development of MF, many improved algorithms based on MF have been proposed, such as using

knowledge graph embedding [3] and integrating the social network [4].

However, traditional CF whose updating method are based on batch learning have some disadvantages.

Firstly, the excessive expense caused by batch leaning make the CF model retraining slowly [5]. Secondly,

traditional CF algorithms are not adept in processing dynamic data [6]. But as we all known, almost the

rating system will join new user and new item in every moment. Thirdly, traditional CF are hard to catch the

transfer of the user’s interest in time

[7]. Finally, the traditional CF can not update user features and item

features in time when user evaluate some new items

[8].

 Corresponding author.

E-mail address: glli@xmu.edu.cn

820

ISBN 978-981-14-1684-2
Proceedings of 2019 the 9th International Workshop on Computer Science and Engineering

 Hong Kong, 15-17 June, 2019, pp. 820-828

admin
打字机文本
10.18178/wcse.2019.06.122

admin
打字机文本
doi:

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本
(WCSE 2019 SUMMER)

admin
打字机文本

admin
打字机文本

To improve these defects above, a lot of OCF methods were proposed. [9] design a new framework for

online social recommendation, which incorporated the relationship of user-item into user preference features

leaning process. [10]

take advantage of online multitask learning to solve the problems of traditional CF. [11]

achieve the task by solving the second order confidence to capture the latest change of user interest.

How to update user preference features dynamically in time is becoming more and more important

[12].

Therefore, we take the user’s neighborhood interest into the OCF from the perspective of Probabilistic

Matrix Factorization (PMF). We assume that users with the same preferences will have similar interest

changes. By capturing a user's interest changes, the algorithm OCFUSim_I we proposed will update the

neighbor interest features of the user. But preferences among users cannot be completely identical. In order

to introduce similarity degree, we present OCFUSim_II which added the similarity of users as weight to

improve the performance.

We conduct some experiments on three real-world datasets: MovieLens100K, MovieLens1M and

HetRec2011 to achieve lower prediction error, i.e. RMSE, and converge faster than other baseline

approaches.

2. Background and Related Work
This Section mainly reviews probabilistic matrix factorization as one of the collaborative filtering

methods. Next, we mainly elaborate the online collaborative filtering to attempt to explain the relationship of

PMF and OCF.

2.1. Probabilistic matrix factorization and problem setting
The commonly used methods for recommendation systems are collaborative filtering (CF). the CF could

break down into two main families: model-based CF and memory-based CF [13]. model-based CF

recommend items mainly based on build user rating model and predict the user rating on a special item [14].

Memory-based CF predict the user rating based on the rating matrix

[15]. Classically, the model-based CF

approaches are more precisely than memory-based approaches, because the memory-based CF cannot solve

the sparsity problems of data [16].

PMF is an excellent model of collaborative filtering in recommend system [17]. It is a probabilistic linear

model with Gaussian observation noise [18]. It decomposed the conditional distribution rating data into

latent user features and latent item features. In the features space, the PMF calculate the product of user

features and item features to predict the unknown rating.

Let us briefly review the problem setting of PMF. Given a rating matrix , where is the

number of users and is the number of items. denotes the rating of user on item . The latent user

matrix is denoted as and denotes the number of features. The latent item matrix

represent with and denotes the number of features. The PMF model defined the

conditional distribution of rating data as:

 (|) ∏ ∏ [(|

)]

 (1)

Where 𝑎𝑛𝑑 present the feature of th user and th item respectively. And (|) is the

Gaussian distribution with mean and variance . In the formula (1), is the indicator function. If the

equals to 1, it denote th user rated the th item. If the equals to 0, it denote th user did not rate the th

item. We assume that (
), (

), and the calculation of user factor and item factor are

shown as the formula (2) ,(3).

 (|
) ∏ (|

)
 (2)

 (|
) ∏ (|

)
 (3)

The objective function of PMF is defined as follow:

∑ ∑ (

)

∑ ‖ ‖

∑ ‖ ‖

 (4)

Where

 , and ‖ ‖

 denotes the Frobenius norm.

821

The objective of the collaborative filtering is to minimize the loss function. Then we can evaluate the

performance of the PMF by Root Mean Square Error (RMSE) which is defined as the formula (5).

 √

| |
∑ (̂)

() (5)

Where denotes the observed rating, and ̂ denotes the predicted rating. D is the set of all observed

ratings, and | | is the number of the set D.

To optimize the RMSE metric, the loss of this model is defined as follows:

 (
)

 (6)

2.2. OCF methods
Online collaborative filtering which update the model in real-time has advantages comparing with

traditional collaborative filtering. The advantages include the low cost of retraining model and capture the

changes of user interest and item popularity [19]. Because the OCF method training the model by updating

the features when the user-item rating changed [20].

Recently, [8] proposed a confidence weighted model based on the OCF. This model combined the

confidence weight into the OCF to reduce the cost of re-training and improve the performance of prediction.

[7]

present a first order sparse collaborative filtering and second order sparse collaborative filtering to solve

the problem of data sparsity.

Meanwhile, OCF is used in many fields. For example, [21] proposed a OCF model which is based on

probabilistic topic model to push science and technology articles to users. [22]

adopted the OCF with the

social network information to help the user to find others with the same interests.

The model of online collaborative filtering is working as follows [23]: Given a prediction matrix

 , where and . Given a single observation (), then we can confirm the loss

on this single observation, which is shown in the formula (7).

 (()) ()
 (∑

) (7)

Next, we can differentiate with respect to 𝑎𝑛𝑑 . The differentiating is given in formula (8) and (9).

 (∑

) (8)

 (∑

) (9)

Finally, the update method of online CF would become the form as follows:

 𝑛()

 𝑛()

Where is the predict rating and 𝑛() is an indicator function.

3. Enhancing Collaborative Filtering by Integrating Social Network
This section mainly presents our novel algorithms for OCF with social network (OCFUSim_I). The core

function of the algorithm we proposed is to add similarity of users of their social network into CF for

improving the accuracy of OCF. Also we improve the previous algorithm by introducing the similarity

between users as weight to gain better accuracy. And the second novel algorithm is called OCFUSim_II.

3.1. Online collaborative filtering by integrating social network
Use Nearest Neighbor Information has a significant effect on collaborative filtering algorithm [24]. [25]

proposed to combine the adaptive neighborhood with the temporal CF, but they only considered the varying

size of neighborhood over time. As we all know, users with similar interests are likely to have similar

shopping preferences. For example, people who have a preference for the same type of film are likely to be

interested in the same actors at the same time. So, the social information is significant important for the

matrix factorization.

In order to take the social network into account, we propose a novel method based on OCF and social

network, which we called OCFUSim_I. The main steps of the algorithm contain three parts: first, we need to

822

find the neighbors of each user when we set the similarity less than threshold. Second, we need to confirm

the loss function and use stochastic gradient descent (SGD) to optimize the loss function. Third, we should

update the user features and item features at each round.

For computing the similarity between users, we adopt the formula (10) to evaluate the similarity of two

users 𝑎𝑛𝑑 .

 ()
| |

| |
 (10)

Where and denote the set of user u and f have rated, respectively.

From the probability matrix factorization perspective, the PMF model is defined by the conditional

distribution of rating data as formula (1). Then, we add the similarity between users into objection function

(4), the objection function defined as follows:

∑ ∑ (

)

∑ ‖ ‖

∑ ‖ ‖

‖

| |
∑ ‖

 (11)

Where D denotes the set of neighborhood of user . And is one of neighborhood.

 , and ‖ ‖

 denotes the Frobenius norm.

We use SGD to optimize Eq. (11):

 () ‖

| |
∑ ‖ (12)

 () (13)

Where ̂ , is learning rate. When receiving a new rating, the model will make prediction:

 ̂
 . Algorithm 1 shows the detailed algorithmic procedure of the OCFUSim_I.

Algorithm 1 OCFUSim_I for OCF
Parameters: k, λu, λv, γ, η

Input: a sequence of rating pairs (i, j, rij)

01： Initialization: initialize a random matrix for 𝑼 𝑹𝒌 , 𝑽 𝑹𝒌 , respectively

02： Record the neighborhoods of Ui by computing the sim(Ui, Uf) when sim(Ui, Uf) >

0.70,0.75,0.80,0.85,0.90.

03： For 𝐭 𝟏 𝟐⋯ 𝐓 do

04： Receive rating prediction request of user 𝒊 on item 𝒋

05： Make prediction 𝑹̂𝒊𝒋 𝑼𝒊
 𝑽𝒋

06： The true rating 𝑹𝒊𝒋 is revealed

07： The algorithm suffers a loss 𝟐(𝑼𝒊 𝑽𝒋 𝜼)

08： Update 𝑼𝒊 𝑽𝒋 according to: (2), (3) respectively

09： End for

3.2. Online collaborative filtering by introducing similarity weight between users
This subsection mainly presents our second novel algorithm for OCF with similarity as weight to

improve the previous algorithm. The second algorithm named OCFUSim_II. In the previous algorithm, we

just record the neighborhoods of user and make use of the average value of similarity about all

neighborhoods. Maybe we can add the similarity between users as the weight into the objective function. So

the new objective function defined as follows:

∑∑ (

)

∑‖ ‖

∑‖ ‖

∑ ()

‖ ‖

(14)

823

Where D denotes the set of neighborhood of user . And is one of neighborhood.

 , and ‖ ‖

 denotes the Frobenius norm.

We use SGD to optimize Eq. (14):

 () ∑ () (15)

 () (16)

Where ̂ , is learning rate, () is the similarity between . When receiving a

new rating, the model will make prediction: ̂
 . Algorithm 2 shows the detailed algorithmic

procedure of the OCFUSim_II.

Algorithm 2 OCFUSim_II for OCF

Parameters: k, λu, λv, γ, η

Input: a sequence of rating pairs (i, j, rij)

01： Initialization: initialize a random matrix for 𝑼 𝑹𝒌 , 𝑽 𝑹𝒌 , respectively

02： Record the neighborhoods of Ui by computing the sim(Ui, Uf) when sim(Ui, Uf) >

0.70,0.75,0.80,0.85,0.90.

03： For 𝐭 𝟏 𝟐⋯ 𝐓 do

04： Receive rating prediction request of user 𝒊 on item 𝒋

05： Make prediction 𝑹̂𝒊𝒋 𝑼𝒊
 𝑽𝒋

06： The true rating 𝑹𝒊𝒋 is revealed

07： The algorithm suffers a loss 𝟑(𝑼𝒊 𝑽𝒋 𝜼)

08： Update 𝑼𝒊 𝑽𝒋 according to: (3), (4) respectively

09： End for

4. Experiments
This part mainly presents the experiment results of our two novel algorithms. We conduct the experiment

on three public datasets and compare with four baseline approaches.

4.1. Datasets
MovieLens100K, MovieLens1M and HetRec2011 are three well-known public datasets which is open

for researchers on the MovieLens website1. The table 1 shows the details of the three datasets.

Table 1 The detail information of datasets

Datasets # Ratings #Users #Items density

MovieLens100K 100,000 943 1,682 6.3%

MovieLens1M 1,000,209 6,040 3,900 4.2%

HetRec2011 855,598 2,113 10,109 4.0%

4.2. Baseline approaches
We make experiments on three public datasets compared with four baseline approaches. These baseline

approaches include OLR, SOCF_II and DAPMF. Detailed explanation of these methods are shown as follow:

● OLR: the OLR algorithm adopts online low-rank approximation to learn users features and item features.

Its parameter optimization employs the online descent method to gain best resolution [23];

● SOCF_II: second-order sparse OCF, which estimate the user-item distribution and take full account of

large latent factors to objective function [12];

● DAPMF: a dual-averaging accelerated online learning framework for CF, which adopts the improved

mini-batch accelerated approach to improve convergence rate [11];

824

4.3. Results and analysis
Firstly, we set the () > threshold to find neighborhoods of user . the value of threshold is

0.70,0.75,0.80,0.85,0.90. as shown in the table 2, when the threshold is equals to 0.85, the performance of

our first algorithm are best in different feature K. Because in the objective function it equals to compute the

average value of the similarity to the user features. If the users’ neighborhoods are too much, users with

different preferences will pull down the performance of the algorithm. In contrast, if the neighborhoods are

not enough, the algorithm could not capture the neighbor effect.

Table 2 The average performance of OCFUSim_I on different threshold

 MovieLens100k MovieLens1M HetRec2011

threshold K=3 K=9 K=15 K=3 K=9 K=15 K=3 K=9 K=15

0.70 1.1025 1.0643 1.0921 1.0532 1.0331 1.0497 1.3232 1.0648 1.2997

0.75 1.0843 1.0432 1.0785 1.0321 1.0135 1.0387 1.1024 1.0201 1.1109

0.80 1.0675 1.0201 1.0696 1.0164 0.9843 1.0101 0.9787 0.9597 0.9879

0.85 1.0426 0.9971 1.0602 0.9745 0.9482 0.9992 0.8812 0.8641 0.9154

0.90 1.0545 1.0322 1.0623 0.9986 0.9645 1.0067 0.9886 0.9493 1.0102

Secondly, we choose the OCFUSim_I which threshold = 0.85 to compare with OLR, DAPMF, SOCF_II

and OCFUSim_II. Table 3, table 4 and table 5 present all algorithms’ average performance on three public

datasets. The bold values in the tables are the best RMSE among all methods in the same K. Compared with

other algorithm, we can find that our algorithm perform better in most cases. It shows that the neighbor

information is effective to improve the accuracy of the OCF. Also, we can find that the OCFUSim_II is

better than OCFUSim_I mostly which indicates that the similarity weight effectively enhanced the ability of

the algorithm. This is because the similarity weight enlarged the impact of similar users and reduced the

impact of users that are not very similar.

Table 3 The average performance on MovieLens100K

Methods K=3 K=5 K=7 K=9 K=11 K=13 K=15

OLR 1.23550 1.12384 1.04829 1.01262 1.02432 1.04998 1.08034

DAPMF 1.04966 1.01874 1.00062 1.01002 1.02533 1.04754 1.06717

SOCF_II 1.09795 1.03982 0.99527 0.99973 1.02123 1.04458 1.06646

OCFUSim_I 1.04265 1.00182 0.99024 0.99715 1.02056 1.04323 1.06024

OCFUSim_II 1.02892 0.99172 0.98576 0.99398 1.01228 1.03843 1.05868

Table 4 The average performance on MovieLens1M

Methods K=3 K=5 K=7 K=9 K=11 K=13 K=15

OLR 1.23427 1.11645 1.03841 0.99094 0.97703 0.99178 1.00754

DAPMF 1.02256 1.00132 0.98087 0.96989 0.98997 1.00982 1.02318

SOCF_II 1.06034 1.00587 0.96988 0.95097 0.96032 0.97756 0.99717

OCFUSim_I 0.97456 0.95238 0.94505 0.94824 0.95932 0.97234 0.99927

OCFUSim_II 0.96905 0.94066 0.94233 0.94688 0.95807 0.97183 0.98958

Table 5 The average performance on HetRec2011

Methods K=3 K=5 K=7 K=9 K=11 K=13 K=15

OLR 0.95958 0.9076 0.87647 0.87907 0.89954 0.92143 0.94289

DAPMF 0.92222 0.89001 0.87643 0.87903 0.89961 0.92259 0.94885

SOCF_II 0.90601 0.87061 0.86123 0.85987 0.86733 0.87893 0.89311

OCFUSim_I 0.88121 0.86753 0.86243 0.86413 0.87986 0.89982 0.91543

OCFUSim_II 0.87102 0.86035 0.85949 0.86838 0.88242 0.88872 0.89638

825

Thirdly, we depict the performance of all methods on MovieLens100K and MovieLens1M when the

latent factor K varies from 3 to 15. As is shown in the Fig.1, The curve of our algorithms are relatively gentle.

the OLR is steep. It is due to the OLR adopted online low-rank approximation to learn users features and

item features. When the latent feature is too small, it cannot capture user features. But because our

algorithms combined the user neighbor information. They can capture user features.

Figure 1: (a) The performance of all methods on MovieLens100K with different latent factor K

(b) The performance of all methods on MovieLens1M with different latent factor K

Figure 2: (a) The performance of all methods on Movielens100k and K=6;

(b) The performance of all methods on Movielens1M and K=6

(c) The performance of all methods on HetRec2011 and K=6

Fourthly, the Fig2 present the performance of all algorithm when the number of samples is changing and

the latent K=6 on the MovieLens100k and MovieLens1M and HetRec2011. From the these pictures, we can

find that the DAPMF convergence rate is fastest. Because the DAPMF is one of the method to speed up the

OCF model. But it cannot achieve best performance finally. Conversely, our algorithms’ convergence rate is

faster than OLR and SOCF_II. Meanwhile, they gain the best accuracy than others. This is also proved that

neighbor information is effective to OCF.

Finally, we conduct the experiment to show how the parameters impact the performance of our

algorithm. Fig.3(a) shows the OCFUSim_I performance when the number of samples is changing and latent

features K = 7 on the MovieLens1M. Fig.3(b) presents the OCFUSim_II performance when the are

changing on the MovieLens1M. we found that the RMSE value of our algorithm will firstly fall and then rise.

826

Figure 3: (a) The performance of OCFUSim_I on MovieLens1M and K=7;

(b) The performance of OCFUSim_II on MovieLens1M and K=7;

5. Conclusions and Future Work
In this paper, we incorporate the user neighbor information with the probability matrix factorization into

the online collaborative filtering. In our first method, we find the user neighbor and add the average value of

similarity to the objective function to predict the users’ rating. In the second method, we add the similarity of

two users as weight to the objective function to improve the accuracy of the model. Because the more similar

people are, the more similar they have shopping preferences.

As is shown in our experiment result, we can find that the first method performs best when the threshold

is 0.85 compared with other threshold. Also, when we compared our methods with other baseline methods,

our methods usually outperform in most cases. From the perspective of converge rate, the DAPMF is the

fastest method than other approaches, but its final RMSE value is not best among the algorithms. We can

find our method converge rate is in the second place and have higher prediction accuracy than other

algorithms. Thus, the network information is helpful for OCF. In addition, if the magnitude of data is the

larger, our algorithms will have better performance. Because the more data we have, the more similar

relationships we will find between users.

In future, we will try to incorporate the popularity of item to temporal OCF. Because users’ preference

and the popularity of item are change over time. Meanwhile, we will adopt the framework of dual-averaging

online learning PMF to improve model converge rate.

6. References
[1] Aggarwal C C. Recommender Systems: The Textbook[M]. Springer Publishing Company, Incorporated, 2016.

[2] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender systems.

Computer 42, 8 (2009)

[3] Wang H , Zhang F , Wang J , et al. Ripple Network: Propagating User Preferences on the Knowledge Graph for

Recommender Systems[J]. 2018

[4] Bahrehmand A , Naseri S , Ding C , et al. Enhancing tag-based collaborative filtering via integrated social

networking information[C]// IEEE/ACM International Conference on Advances in Social Networks Analysis &

Mining. IEEE, 2013.

[5] G. Ling, H. Yang, I. King, and M. R. Lyu, “Online Learning for Collaborative Filtering,” presented at the IEEE

World Congress on Computational Intelligence, Brisbane, Australia, 2012, pp. 1–8.

[6] Y.-X. Li, Z.-J. Li, F. Wang, and L. Kuang, “Accelerated Online Learning for Collaborative Filtering and

Recommender Systems,” 2014, pp. 879–885.

827

[7] F. Lin, X. Zhou, and W. Zeng, “Sparse Online Learning for Collaborative Filtering,” Int. J. Comput. Commun.

CONTROL, vol. 11, no. 2, pp. 248–258, Apr. 2016.

[8] Zhou X , Shu W , Lin F , et al. Confidence-weighted bias model for online collaborative filtering[J]. Applied Soft

Computing, 2017.

[9] Z. Zhao, H. Lu, D. Cai, X. He, and Y. Zhuang, “User Preference Learning for Online Social Recommendation,”

IEEE Trans. Knowl. Data Eng., vol. 28, no. 9, pp. 2522–2534, Sep. 2016.

[10] J. Wang, S. C. H. Hoi, P. Zhao, and Z.-Y. Liu, “Online multi-task collaborative filtering for on-the-fly

recommender systems,” 2013, pp. 237–244.

[11] J. Lu, S. Hoi, J. Wang, and P. Zhao, “Second order online collaborative filtering,” in Asian Conference on

Machine Learning, 2013, pp. 325–340.

[12] Nathan N. Liu, Min Zhao, Evan Xiang, and Qiang Yang, “Online evolutionary collaborative filtering,” presented

at the Proceeding RecSys ’10 Proceedings of the fourth ACM conference on Recommender systems Pages 95-102,

Barcelona, Spain, 2010.

[13] X. Zhou and S. Wu, “Rating LDA model for collaborative filtering,” Knowl.-Based Syst., vol. 110, pp. 135–143,

Oct. 2016.

[14] J. Wilson, S. Chaudhury, B. Lall, and P. Kapadia (2014), Improving Collaborative Filtering based Recommenders

using Topic Modelling, Web Intelligence, 340–346.

[15] G. Rainer, N. Nrik, H. Peter J., and S. Yannis (2011), Large-scale matrix factorization with distributed stochastic

gradient descent, Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and

data mining, 69–77.

[16] Saric T; Simunovic G; Simunovic K (2013), Use Of Neural Networks In Prediction And Simulation Of Steel

Surface Roughness, International Journal Of Simulation Modelling,12(4): 225-236.

[17] Jing L , Wang P , Yang L . Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative

Filtering[C]// International Conference on Artificial Intelligence. AAAI Press, 2015.

[18] Josef Bauer and Alexandros Nanopoulos. A framework for matrix factorization based on general distributions. In

Proc. of ACM RecSys, pages 249–256,2014.

[19] S. Kant and T. Mahara, “Merging user and item based collaborative filtering to alleviate data sparsity,” Int. J. Syst.

Assur. Eng. Manag., vol. 9, no. 1, pp. 173–179, Feb. 2018.

[20] S. Shalev-Shwartz, “Online Learning and Online Convex Optimization,” Found. Trends® Mach. Learn., vol. 4, no.

2, pp. 107–194, 2011.

[21] C. Wang and D. M. Blei, “Collaborative topic modeling for recommending scientific articles,” in Proceedings of

the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, 2011, pp. 448–456.

[22] X. Yang, H. Steck, and Y. Liu, “Circle-based recommendation in online social networks,” presented at the

Proceeding KDD ’12 Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery

and data mining, Beijing, China, 2012, pp. 1267–1275.

[23] J. Abernethy, K. Canini, J. Langford, and A. Simma, “Online collaborative filtering,” Univ. Calif. Berkeley Tech

Rep, 2007.

[24] Y. Koren, “Factor in the neighbors: Scalable and accurate collaborative filtering,” ACM Trans. Knowl. Discov.

Data, vol. 4, no. 1, pp. 1–24, Jan. 2010.

[25] Bahrehmand a, Naseri S, Ding C, et al. Enhancing tag-based collaborative filtering via integrated social

networking information[C]// Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining. ACM, 2013. ACM, 2013.

828

