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Abstract. we propose a method of improving word embeddings by fusing the hidden information within 

words, which is different from the traditional method of directly using morphological information on the 

surface of words to train word embeddings. Based on the average principle and two attention mechanisms, 

we propose to use the hidden information inside words, which is called the implied meanings of morphemes 

of words in this paper, and propose six implied meaning embedding models. The comparative experiments 

are carried out on two basic Natural Language Processing tasks, which prove that our models have more 

advantages than the classical models represented by CBOW, Skip-Gram and GloVe in mining semantic 

information. In addition, exploring the relationship between the importance of synthetic implied meanings 

and the word itself. 
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1. Introduction 
At present, the derivative word embeddings have been successfully applied to many downstream Natural 

Language Processing (NLP) tasks. Such as, named entity recognition [1], text classification [2], and question 

answering [3]. Among many embedded methods, the Continuous Bag-of-Word (CBOW) [4] model and the 

Skip-Gram [4] model and the Global Vectors (GloVe) [5] model, are recognized by the industry insiders for 

their practicability and efficiency. However, these word-embedded methods only learn semantic information 

at the word level, but ignore the morphemes within words. In recent years, there have been many models that 

use meaningful morphological structures inside words, and their effectiveness has been proved [6]. 

Unfortunately, these models only utilize the surface morphology of morphemes.  

The new scheme we explored is to use the implied meanings of morphemes to train word embeddings. 

The traditional word embeddings model may not be able to shorten the distance between "unseeable" and 

"invisible" in the vector space. Because the morphemes composition of the two words is different, especially 

"see" and "vis". However, by replacing morphemes with the implied meaning of words, it is obvious that the 

meaning of "unseeable" and "invisible" is the same. 

In this paper, we use three strategies of integrating to combine implied meanings of morphemes and 

adopt two ways of fusing to train, so six simple and efficient models are proposed, which are collectively 

called Implied Meaning (IM) models. We directly cover the corresponding word embeddings in the 

vocabulary without adding extra embedding for generating and training of implied meanings. We only need 

to create a mapping table of words to describe the relationship between words and the implied meanings of 

their morphemes. We performed IM models and other classic models on the two tasks of word similarity and 

analogical reasoning, respectively. Experiments show that the performance of IM is more advantageous than 

all other classic models. In short, the contributions of this paper are as follows: 

• We averagely distribute the weights of the implied meanings according to morphemes, and also 

introduce two types of attention mechanisms to assign the weights of the implied meanings, it 

perfects the strategy of weight allocation, and provides a new idea for the distribution of weights. 
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• We adopt two fusion methods to train and improve word embeddings. Six implied meaning models 

are proposed, and experiments are carried out on two well-recognized datasets and other two datasets, to 

verify the excellence of IM models. 

• Exploring that the importance of synthetic implied meaning corresponding to morpheme set to predict 

target words depends on the degree of similarity between them and words themselves. It provides a reference 

for other researchers to further exploit the implied meanings of morphemes. 

2. Related Work 

2.1. Word Level  
Generally, word embedding models are mainly divided into two types based on neural networks and 

matrix-based decomposition. CBOW [4] and Skip-gram [4] are widely used models based on neural 

networks, which are just opposite effects to each other. Skip-gram predicts context by using target words. 

The Latent Semantic Analysis (LSA) model [7] is a very classical matrix factorization model, the singular 

value decomposition of the word-document co-occurrence matrix is used to obtain the subject, word 

representation and document representation. In order to take advantage of these two kinds of advantages at 

the same time, Pennington et al. proposed the famous GloVe model [5], which is better than CBOW and 

Skip-gram in some specific tasks. These models can collect better semantic information at word level, but 

they do not mine morphological information of words. 

2.2. Morphological Structure-based  
The fine-grained models are proposed by using the components that make up words, such as roots and 

affixes. Luong et al. [6] proposed a morphological recurrent neural network model to learn morphological 

perceptual word embedding, according to morphology the words were segmented to generate morphemes, 

and the generated morphemes were added to the training of word embedding. Kim et al. [8] integrated 

convolutional character information into words. This model, which can learn semantic information from the 

character-level, has proved to be an effective way to deal with morpheme-rich languages, but it takes an 

astonishing amount of time. Cotterell et al. [9] used a log-linear model to make words with similar 

morphologies close to each other. Cotterell et al. [10] constructed a model using Gauss graphs and used 

morphemes to infer the continuous representation of unknown words. However, these models can only 

collect information on the morphological surface of the word without digging deeper meanings. In contrast, 

the model we proposed not only uses morphological information, but more importantly, it digs deep implied 

meanings. 

3. Our Models 
We IM models are based on efficient CBOW with negative sampling. When fusing the implied meanings 

of morphemes, we adopt three strategies of integrating and two ways of fusing to train. Six models named 

Implied Meaning-Average-Average (IMA-A), Implied Meaning-Hard-Average (IMH-A), Implied 

Meaning-Soft-Average (IMS-A), Implied Meaning-Average-Weighting (IMA-W), Implied 

Meaning-Hard-Weighting (IMH-W), and Implied Meaning-Soft-Weighting (IMS-W), are proposed. The first 

three are mainly different in the strategy of combining implied meanings of morphemes. The main difference 

between the first three and the last three is that the way of fusion is different. Obviously, many words contain 

multiple affixes, this paper chooses the longest sequence of characters that can be matched as the final 

morpheme of the word. Then, we will describe each IM model in detail. 

3.1. IMA-A 
IMA series (including IMA-A and IMA-W) are based on the fact that words are composed of prefixes, 

roots and suffixes, so it is assumed that these three components contribute equally to the word. In a given 

corpus of   *          +, the implicit meaning of        ,   - morpheme is divided into three parts: 

  ,    and   , which respectively denote the prefix implicit meaning set, the root implicit meaning set and 

the suffix implicit meaning set. Therefore, the modification of    in the input layer is as follows:  
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Fig. 1: IMA-A. We use the sentence “this is an invisible harm” as an example. When calculating the input vector of 

“invisible”, we split the word into prefix, root and suffix, three parts have same weight. Implied meanings also gain the 

same weight inside each part. 

   (1) 
Where     is the original word embedding of   .    ,     and     denote the length of   ,     and 

  , respectively.    ,     and     represent prefix implied vector, root implied vector and suffix implied 

vector, respectively. Since IMA-A assume that the synthetic implied meaning of the morpheme is as 

important as the word itself for the prediction of the target word, that is,          . Ultimately,     is 

replaced by  ̂   for CBOW training. 

3.2. IMH-A 
However, in fact, the root of a word has a decisive effect on the meaning of a word, while suffixes play a 

supplementary role in more cases, so unimportant implied meanings are excessively increased that can be 

opposite effect. Inspired by the Hard Attention mechanism, IMH series (including IMH-A and IMH-W) are 

proposed to focus only on the implied meaning closest to the word meaning, that is, selecting an implied 

meaning that is closest to the meaning of words from the implied meaning set of morphemes. For IMH-A, 

the embedding of    can be modified to: 

         (2) 

          (3) 

 
Fig. 2: IMH-A. Choosing only an implied meaning closest to the meaning of “invisible”. 
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Fig. 3: IMS-A. All Implied meanings of morphemes of “invisible” obtain different weights. 

 

We use    (     ) to represent the cosine similarity between    and   , where     
  is variable 

value when this function gets the maximum value.    indicates the word embedding of implied meaning 𝑤. 

   is all the implied meanings of    morphemes, which consists of three parts:   ,    and   . The same 

reason          .  

3.3. IMS-A 
We found that IMS-A model might be able to cause other cases where useful implications are missing, 

such as            , which is easily understood to the opposite mean in the case of only choosing the 

implied meaning      , and interferes with word embedding. Therefore, considering the Soft Attention 

mechanism, we put forward the IMS series (including IMS-A and IMS-W), and believe that Implied 

meanings of all morphemes contribute to the meaning of words, and the weight is assigned according to their 

contribution. The more the contribution of the implied meaning, the more weight it gains, so as to enhance its 

importance. The same reason          . The embedding of    is obtained by the following equation: 

         (4) 

                      (5) 

3.4. Differences between IMX-A and IMX-W 
The difference between IMA-A and IMA-W is that IMA-A believes that the synthetic implied meanings 

of morphemes of a word is as important as the word itself for predicting the target word, so the 

above(1),(2),(4) equation          ，while IMA-W considers that the contribution of the synthetic 

implied meaning of the morphemes to predicting the target word depends on the degree of similarity between 

it and the word itself, so the synthesized implied meaning and the word are fused by weighted averaging. 

The same is true of the differences between IMH-A, IMS-A and IMH-W, and IMS-W. IMX-A Contains 

IMA-A IMH-A and IMS-A, and IMX-W Contains IMA-W IMH-W, and IMS-W. Equations (6) (7) for    

and    values in IMX-W. 

               (6) 

 

                 (7) 
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Where    (       )    

IMA-W modified part of the formula: 

               (8) 

IMH-W modified part of the formula: 

                      (9) 
IMS-W modified part of the formula: 

                   (10) 
 

4. Experimental Settings 

4.1. Corpus and Morpheme Mapping Table 
In this paper, we use corpus which is originates from the website of ACL Machine Translation

1
 Seminar 

in 2013 [8]. We chose the news corpus of 2009, which is about 1.8GB in size. It contains more than 

0.5billion tokens and more than 0.6 million words. We filter out all the numbers and punctuation symbols in 

the corpus to achieve better quality of embedded words.  

First, we use Morfessor [11] to perform unsupervised morphological segmentation of words in the 

vocabulary. Then, the matching between segmentation results and implied meaning is made in the implied 

meaning table, in which the final morpheme is selected according to the rules of morpheme matching, and 

then is further replaced by its implied meaning. Because this article focuses on verifying that IM models use 

the implied meaning of morphemes to improve word embedding is more superior, and it is just a simple 

common sense of a language, so this article uses artificially created mapping tables and only contains 102 

prefixes, 403 roots and 86 suffixes. 

4.2. Contrast Models 
In order to make the experimental results more convincing, we chose the most well-known word 

embedding models of three word-levels: CBOW [4], Skip-gram [4] and GloVe [5]. We also implemented a 

Morpheme Enhance Word Embedding (MEWE) model, its structure is a variant of a morphological-based 

recurrent neural network model [6]. The structure of MEWE model is similar to our IMA-A model, but it 

uses morpheme to embedding directly. The source code for our training CBOW and Skip-gram is word2vec
2
. 

Glove is trained using Pennington et al. open source code
3
 [5]. We modified the original word2vec code to 

train IM models and MEWE. 

4.3. Parameter Settings 
Because parameter setting directly affects the performance of word embeddings [12], all models are 

trained with the same parameters to ensure fairness and justice. We used negative sampling techniques to 

speed up the training process. According to the size of the corpus used in this paper, we choose to set it to 20 

[13]. The dimension of word embedding is set to 200 [14]. Setting the context window size to 5 [13]. 

4.4. Word Similarity 
This experiment is to test the ability of word embeddings to extract semantic information from corpus. If 

the related words are more similar in the vector space of a certain model, then the model is considered to 

have better semantic mining ability. This paper uses four public datasets, including two recognized standard 

                                                   
1 http://www.statmt.org/wmt13/translation-task.html 
2 https://github.com/dav/word2vec 
3 https://github.com/maciejkula/glove-python 
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datasets Wordsim-353 [15] and RG-65 [16]. In order to avoid contingency, the data set used at the same time 

is Rare-Word (RW) [9] and Men-3k [17]. In this paper, the distance between two words be measured by 

using cosine similarity [13], [5], and the correlation is detected by Spearman rank sum coefficient (ρ). The 

higher the ρ value, the better the performance.  

4.5. Analogical Reasoning 
According to the fact that two objects are identical or similar in some attributes, the reasoning process 

that they also are the same in other attributes is inferred by comparison. For example: amazing, amazingly, 

apparent, apparently, namely,          . Where   is unknown, let             denote the words 

       , respectively. To obtain d, we first calculate  ̂          . Then, we find that the maximum 

cosine distance from  ̂  is the word  ̂. Therefore, set   to  ̂. In this article, we use the MRAR (Microsoft 

Research Analogical Reasoning) datasets. This 8,000-size data set was created by Mikolov [18]. 

5. Experimental Results 

5.1. Word Similarity Results 
In Table 1, it can be seen that the IM models surpass all classical models on four datasets. In particular, 

our models' performance on the two datasets of recognized standards (Wordsim-353 and RG-65) is 

approximately 7% and 10% higher than the traditional CBOW model, respectively. On the Men-3k, IMS-W 

achieves the results of 71.53%. The obvious contrast confirms the superiority of our models. By fusing 

morphemes, MEWE also performs better than other classic models, but there is still a certain gap compared 

to the performance of our IM models. In fact, MEWE only makes the words with similar morphemes 

distribute more closer in the vector space, and does not excavate deeper semantic information, because it 

simply adds morphological information to word embedding. By comparing the results of IMX-A and 

IMX-W, it is easy to find that the weighted fusion of synthetic implied meanings and words can achieve 

better effects. Especially, IMH-W is 3.75% ahead of IMH-A on RG-65 datasets. 

Table 1. Results (%) on word similarity and analogical reasoning (AR). The bold numbers indicate the highest values. 

 CBOW Skip-g GloVe MEWE IMA-A IMH-A IMS-A IMA-W IMH-W IMS-W 
Wordsim-353 58.57 61.63 49.41 60.05 62.25 61.56 63.15 64.45 62.69 65.56 

RG-65 56.46 62.76 59.87 60.82 62.77 63.01 62.53 63.02 66.76 64.56 

RW 40.32 36.27 33.38 40.86 43.43 40.69 42.16 45.45 41.98 42.96 

Men-3k 68.03 66.25 60.46 66.79 66.39 64.68 69.37 67.56 65.63 71.53 
AR 13.34 13.09 13.74 17.36 20.56 18.35 17.6 22.57 19.23 18.58 

5.2. Results of Analogical Reasoning 
As shown in Table 1, our IM models have a greater advantage than other classic models, leading the 

classic CBOW model by 9.23%. According to our scheme, words with similar morphemes will move closer 

together, and there is a tendency to group near the implied meaning of the corresponding morphemes. This 

makes our model have obvious advantages in dealing with the problem of analogical reasoning. Analogical 

reasoning is actually a semantically related task, and "c" and "d" have similar attribute characteristics. The 

IM models have the ability to mine deeper semantic information, and therefore achieve better results than 

EMEW. It is worth noting that IMA-W is 2.01% higher than IMA-A, which confirms the above conclusion 

again. 

6. Conclusion and Future Work 
In this paper, we propose a set of new learning word embeddings schemes, which mine the deep 

information inside words and integrate it into word embeddings, instead of simply using morphological 

components. By introducing attention mechanisms, three strategies of combining implied meanings of 

morphemes and two ways of integration are created, and propose six implied meaning models, named 

IMA-A, IMH-A, IMS-A, IMA-W, IMH-W and IMS-W respectively. We choose three classical word 

embedding models for comparison, meanwhile，and implement a model that directly utilizes morphemes. 

Testing in two natural language processing tasks, the results show that the IM models have more advantages 
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than all the classic models on the four word similarity datasets, and in analogical reasoning task, our models 

still perform better than all classical models, even if WEME performance also is slightly inferior. By 

comparing the effects of different fusion methods, it is found that the weighted fusion of synthetic implied 

meanings and words can achieve better results. In the future, we hope to further explore the use of supervised 

deep learning models with implied meanings of morphemes to mine semantic information. 
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