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Abstract. Earthquake detection is a foundation and critical work link in the study of seismology. 

Traditional detection algorithms have the disadvantages of low detection sensitivity, low computational 

efficiency, and poor general applicability. In this paper, we develop a novel earthquake detection method 

based on convolutional neural network (CNN) and long short-term memory network (LSTM). It extracts the 

high-level features in the seismic signal and learns the time-frequency characteristics of the main phase by 

recording the three component data on a single station. We train the network using 4932 waveform windows 

(2236 positive windows and 2696 negative windows) recorded in Wenchuan, China, with a window size of 

30s. Using the trained model to test a continuous waveform for one day, compared to the long-short window 

energy ratio method (STA/LTA), all manually selected seismic events were successfully detected. To explore 

the impact of different window sizes and LSTM layers on the detection results, we use a larger dataset 

(derived from Oklahoma, USA) for network training. The test results show that our method not only has a 

good generalization ability for cataloging events, but also detects micro-seismic events that are not included 

in the catalog. The detection accuracy of cataloging events reaches 100%. Our results indicate that this 

method has fast, efficient and scalable superior performance in earthquake detection. 
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1. Introduction
Large and small earthquakes occur every year around the world. With the continuous increase of seismic

stations, the recorded continuous seismic waveform data has also increased significantly for each earthquake. 

It is increasingly unrealistic to process these seismic data entirely by hand. How to process massive seismic 

observation data quickly and efficiently is a challenging task. 

At present, the mainstream methods for automatic seismic detection and identification at domestic and 

foreign are long-and-short window ratio method (STA/LTA) [1], template matching detection algorithm [2]-

[5] and fingerprint similarity threshold method [6]. Traditional methods have different focuses on the

qualitative indicators of seismic detection. Although STA/LTA can find unknown sources, has high universal

applicability, can detect earthquakes in real time, and has high computational efficiency, but lacks sensitivity

to low SNR events, so its detection sensitivity is low. Although the template matching method solves the

problem of low detection sensitivity, the method needs to determine the template waveform in advance, so

its general applicability is low. For the fingerprint similarity threshold method, although the efficiency of the

similarity search can be improved, the output is limited to repeated events.

The deep learning method is a subset of artificial neural networks (ANNs) that has emerged and 

revolutionized many sciences and engineering domains in recent years [7]-[9]. In particular, recent 

advancements in deep learning (DL) frameworks based on deep neural networks drastically improved 
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accuracy in image recognition, natural language processing and other applications [10]. Limin et al. [11] 

used deep neural network to identify singular points on a fingerprint. Alexiei et al. [12] made use of 

Convolutional Neural Networks (CNNs) to forecast the next period price direction with respect to the current 

price. Recently, Wisal et al. [13] shed light on the utilization of a deep convolutional neural network (DCNN) 

for facial emotion recognition from videos. The advantage of neural networks is that they have more hidden 

layers. By multi-level abstraction, it has a stronger description ability than simply increasing the number of 

neurons. It can abstract the required low /Medium/Advanced features from the original data, which 

eliminates the need for manual engineering of important pre-processing and features [14]. Perol et al. [15] 

used the CNN method to identify and classify induced earthquakes in the central United States. While 

achieving higher recognition capabilities than template matching methods, computational time-consuming 

and storage usage was significantly lower than the FAST method. The convolutional neural network is a kind 

of deep neural network. Using convolution kernel as mediation, the inherent local structure existing in the 

data is identified by convolution/downsampling operation, and the number of weight parameters is reduced, 

which can effectively avoid over-fitting. Titos et al. [16] introduced recurrent neural networks (RNN), long 

short-term memory (LSTM), and gated recurrent unit (GRU) to detect and classify continues sequences of 

volcano-seismic events at the Deception Island Volcano, Antarctica. Yue W et al. [17] developed a region-

based densely connected network method to detect events from seismic signals. With the continuous 

development of machine learning and deep learning technology in recent years, the number of researchers 

using this technology for seismological research has increased year by year. This has led to the development 

of many excellent seismic detection algorithms [18]-[22]. 

In this study, we consider seismic detection as a two-class supervised learning problem. Using the 

technique of deep learning, a seismic detection method combining a convolutional neural network and a long 

short-term memory network is proposed. The time-frequency characteristics in the seismic signal are learned 

by recording three component data on a single station. Among them, the Convolutional Neural Network 

(CNN) extracts the advanced features of seismic waveforms through convolution/downsampling operations. 

After the convolution feature extraction, the feature quantities are redistributed into the sequence and then 

fed into the LSTM network. The LSTM layer will learn and model the timing patterns of the data. At the end 

of the network is the fully connected layer, which performs advanced reasoning and maps the learned 

sequence model from the final step to the desired output class. We used more than 30 G of raw seismic 

waveform data, divided the training and test sets, and then demonstrated the performance of the network. 

The model is highly scalable, and it generalizes the seismic signals that have never appeared during training. 

Compared with traditional algorithms, the detection accuracy is higher, and the operation speed is faster. 

2. Methodology

2.1. Long-short-term memory networks 
Long-short-term memory networks are a special kind of recurrent neural networks. They were first 

proposed by Hochreiter & Schmidhuber in 1997. The original intention was to solve the problem of long-

term dependence on neural networks. The key to LSTM is the state of the cell, which transfers information 

from the previous unit to the next unit with minimal linear interaction. Also, the LSTM controls the 

discarding or adding information through the "gate" to achieve the function of forgetting or remembering. An 

LSTM has three of these gates, to protect and control the cell state, namely the forgotten gate, the input gate, 

and the output gate. The structure of multiple LSTM layers is as shown in Fig. 1 below.  
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Fig. 1: Multiple LSTM layers 

In the figure, the definition of cell memory and each gate is as follows 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑓) (1) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑖) (2) 

𝑂𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑜) (3) 

𝐶𝑡̃ = 𝑡𝑎𝑛ℎ⁡(𝑊𝐶 ∙ [ℎ𝑡−1,𝑥𝑡] + 𝑏𝐶) (4) 

Where 𝑓𝑡 is forget gate, 𝑖𝑡 is input gate, 𝑂𝑡 is the output gate, and 𝐶𝑡̃ is candidate value for replacing the

memory. The matrices 𝑊𝑓, 𝑊𝑖, 𝑊𝑜, 𝑊𝐶 and 𝑏𝑓, 𝑏𝑖, 𝑏𝑜, 𝑏𝐶 are associated weights and bias terms, and 𝜎 and

tanh are activation functions: 

σ =
1

1 + 𝑒−𝑍
(5) 

tanh =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
(6) 

The value of memory cell at each time step will be set using the candidate value at current step (𝐶𝑡̃) and

previous value (𝐶𝑡−1) based on input and forget gates:

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃ (7)

Where ∗ is element-wise multiplication. The final state at time t,  ℎ𝑡, is obtained based on output gate

and the value of memory cell: 

ℎ𝑡 = 𝑂𝑡 ∗ tanh(𝐶𝑡) (8) 

        LSTM has a variety of applications in the technology field. LSTM-based systems can learn translation 

languages, control robotics, image analysis, document summarization, speech recognition image recognition, 

handwriting recognition, control of chat bots, predictive disease, click-through rate and stock, synthetic 

music, and more. In this paper, we apply LSTM to seismic waveform sequence learning, and the results have 

achieved good classification detection results. 

2.2. The network architecture 
The network structure we proposed is shown in Fig. 2. In this network structure, we use an 8-layer 

convolutional neural network, and the number of layers in the LSTM layer was not specified in consideration 

of the needs of the experiment. 

The initial inputs of the network structure are three-component seismograms of known earthquakes. Due 

to a large amount of data, we create the dataset and convert the waveform data of the original fixed window 

and the corresponding label into the .tfrecords file format corresponding to tensorflow. The records data file 

is a binary file that stores seismic waveform data and tags in a unified manner. It can make better use of 

memory and quickly copy, move, read, and store in tensorflow. The convolutional neural network (CNN) is 

used as feature extractor because it can extract spatial structure of input channels through convolution 

operation. At each convolution layer, all three channels are convolved and summed using a linear 1D filter. 

We use a convolution kernel size of 3, which extracts the high-frequency characteristics of the input signal. 

σ tanhσ
σ

tanh

htf t it otCt
~

σ tanhσ
σ

tanh

σ tanhσ
σ

tanh

ht 1 ht ht 1

xtx -t 1 xt 1

C t 1
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At the same time, unlike standard convolution, we set the stride size to 2 instead of 1, and the feature amount 

will be reduced by half after each convolution/downsampling, which will speed up the computational 

efficiency. With progressive downsampling, deep input signals have an exponentially increasing receptive 

field, which allows them to extract low-frequency features. During the convolution process, we set the fill 

mode to ‘SAME’ zero padding to ensure that the feature size after convolution remains the same.  

Fig. 2: The architecture of our proposed deep neural networks. 

After CNN feature extraction, we will extract the extracted features tensor in one-dimensional and 

sequence segmentation. It is then fed into the LSTM module, which will learn and model the timing patterns 

of the data. Since each of our sequences is just trying to predict a classification probability, we only use the 

last element of the LSTM top-level output sequence. Finally, enter them into the fully connected layer, which 

performs advanced reasoning and maps the learned sequence model from the final step to the desired output 

class. Here, the classification activation function we use is the softmax function. Softmax function is a 

generalization of the logistic function that maps a length-p vector of real values to length-K vector of values, 

as follows: 

𝑃(𝑦 = 𝑗|𝑥) =
𝑒𝑥

𝑇𝑊𝑗

∑ 𝑒𝑥
𝑇𝑊𝑘𝐾

𝑘=1

⁡ (9) 

Here, this can be seen as the composition of K linear functions 1,...,
T T

Kx xx W x W , where
Tx W denotes the inner product of x and W. 

Overall, the model is an end-to-end learning framework that can characterize seismic data with high 

precision. It is scalable to meet many applications for seismic data processing automation. 
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2.3. Experimental  results 
A large number of original seismic flow data and corresponding seismic event catalogs we used in the 

study were published by Perol et al. (2017) on Github. We used this raw seismic stream data to create 

training and test data sets for two different window size events and noises based on the corresponding 

catalog. Among them, the 10s window size training set contains 2709 events, 1263847 noise; the test set 

contains 209 events, 231168 noise. The 30s window size training set contains 2709 events, 424409 noise, 

and the test set contains 209 events and 161,280 noises. To get a better model performance improvement, we 

preprocess the data set by removing the mean and normalization. We trained the model on one GeForce 

GTX 980 Ti-PCI-E GPU. We optimize the model parameters by minimizing an L2- regularized cross-

entropy loss function. The optimization algorithm chosen is the ADAM algorithm. When training and testing 

the models for different window sizes, we performed two, five, and eight layers on the LSTM layer. 

To more intuitively reflect the process of training and test evaluation, we use the matplotlib library to 

visualize it. As shown in Fig. 3 below 

Fig. 3: Accuracy rate trend chart for different window size training processes. The left side indicates the size of the 10s 

window, the right side indicates the size of the 30s window. 

Table 1 shows the results of the selected 10s-window size for earthquake detection. From Table 1, we 

can see that our model has achieved 100% accuracy for the detection of events. This shows that our model 

has good detection and recognition capabilities. Also, for the detection of noise, the effect is not obtained as 

the same as the event. This is because we created the dataset based on the manually selected earthquake 

catalog. For some earthquakes with small magnitudes, it is inevitable that there will be some leakage. By 

comparing the results of the different LSTM layers, we conclude that the effect of using the 5-layer LSTM 

layer is optimal. 

Table 1: The results of the selected 10s-window size for earthquake detection 

Table 2 shows the results of the selected 30s-window size for earthquake detection. It can be seen that, as 

the 10s window size, when the number of LSTM layers is 5, the detection result is the best. At the same time, 

for our datasets, from the experimental results of different window sizes, the detection of the window size of 

10s is better than the window size of the 30s. We found that the selection of window size is a very important 

step in earthquake detection preprocessing. 

Model Average Loss 
Average accuracy 

(events) 
Average accuracy 

(noise) 

10s_window/2_layers_CNN+LSTM 0.0500 100% 69% 

10s_window/5_layers_CNN+LSTM 0.0424 100% 97.6% 

10s_window/8_layers_CNN+LSTM 0.0333 100% 72.2% 
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Table 2: The results of the selected 30s-window size for earthquake detection 

Similarly, we selected the corresponding best model for the test set of two different window sizes to 

make the test verification process trend graph. The results are shown in Fig. 4 below. 

Fig. 4: Accuracy rate trend chart for different window size testing processes. Blue and red lines represent events and 

noise, respectively. The left side indicates the size of the 10s window, the right side indicates the size of the 30s window. 

In addition to the performance tuning experiments of the model, we also used a small data set to perform 

experiments comparing the performance of the traditional STA/LTA method with the proposed model. Our 

training set contains 2,236 events and 2,696 noise in 30s window size samples. The test set was a continuous 

waveform of July 25, 2008, on which we manually picked 44 cataloging events. Through experimental 

testing, our model was able to quickly and accurately detect all 44 cataloging events, and also detected some 

uncataloged microseisms (confirmed by AR+AIC method). Compared to our model, only the 41 events in 

the catalog were detected using the STA/LTA method. The experimental test results are shown in Table 3 

below:  

Table 3: Comparison of two detection results 

Method Number of detection 

STA/LTA 41 

CNN-LSTM 44 

Fig. 5, Fig. 6, and Fig. 7 below are the spectrograms of the three components we selected for the detected 

event and noise. 

Model Average Loss 
Average accuracy 

(events) 
Average accuracy 

(noise) 

30s_window/2_layers_CNN+LSTM 0.0786 100% 69% 

30s_window/5_layers_CNN+LSTM 0.0851 100% 88.8% 

30s_window/8_layers_CNN+LSTM 0.0772 99.5% 73% 
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Fig. 5: Spectrogram corresponding to the east and west components (E) 

Fig. 6: Spectrogram corresponding to the north and south components (N) 

Fig. 7: Spectrogram corresponding to the vertical component (Z) 

This paper focuses on how to combine CNN and LSTM for seismic detection and explores the 

generalization capabilities of models in different LSTM layers. The framework enables fast and accurate 

detection of seismic events. The learning model also has a good detection effect on microseisms that are not 
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included in the catalog. Compared with the traditional STA/LTA method, our method has higher detection 

sensitivity. As long as the model is trained, our method can be quickly applied to seismic stream files for 

detection and classification. The architecture is very flexible and can be easily extended. 
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