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Abstract. We propose a novel method for mixed-quality stereo images super-resolution (SR) based on 

patch matching. Previous related methods always put effort on disparity estimation which cannot achieve the 

accuracy for SR. In this paper, we directly utilize the information from the high-resolution (HR) image to 

reconstruct the low-resolution (LR) image. More specifically, the vanishing point estimation algorithm is 

adopted to identify the planes correspondence in the pair of images. Then we search the best matching patch 

for LR from HR in the corresponding planar area. Furthermore, we define a curvature criterion that can keep 

the patches with high-frequency information during patch matching process. Compared with state-of-the-art 

methods, the proposed framework gains 1.39 PSNR improvement and 0.003 SSIM improvement. 

Keywords: Stereo images, super-resolution, patch matching. 

1. Introduction
Stereo images draw much attention in surveillance-oriented applicative fields since they are able to

provide users a realistic 3D viewing experience of a scene [1]–[3]. For the past decades, most researchers 

focus on the disparity estimation from stereo images [4]–[6]. Stereo images are usually acquired by 

vertically-aligned cameras or horizontally -aligned cameras.  

Stereo images can be classified into homogeneous stereo images[5][6] and heterogeneous stereo images 

[7] [8], [9]. The first one has the same image size which is obtained by two same vision sensors. The other

one has different size and quality which can be generated by two situations:1) Stereo vision system with

different vision sensors which aim at combining the advantage of a high-resolution and large field of view

[8], [9]. 2) Asymmetric compression [7], i.e. two views are encoded with different spatial resolutions

(resolution-asymmetry) in the communication or telepresence system to accelerate transmission rate or

reduce storage.  Although such heterogeneous images have the aforementioned advantages, they also pose

challenges for image registration which is an essential step during the process of stereo images. To solve this

issue, super-resolution (SR) for the low-resolution image reconstruction is demanded, which is able to

normalize the heterogenous image pair. Zhi Jin [7] propose an end-to-end fully Convolutional Neural

Network (CNN) for low-resolution images in mixed-quality 3D stereo images with depth maps by using the

inter-view from 3D warping. However, accurate depth maps are hard to acquire during practical applications.

Jain [10] reconstruct the low-quality video in mixed resolution videos by using the stereo correspondence,

but pixel level accuracy cannot achieve the requirement of high-resolution image reconstruction where

subpixel accuracy is needed. Hence, sophisticated approaches for mixed quality stereo images super-

resolution are highly desired.

In this paper, we propose a novel method for mixed-quality stereo images super-resolution based on 

patch matching. Our goal is to develop an effective method which can accurately recover the high-frequency 

information of a low-resolution image in the mixed quality images pair by exploiting the prior knowledge 
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from the corresponding high-resolution image without the calculation the disparity between stereo images. 

To this end, we adopt the vanishing point detection method to constrain the search area of patch matching in 

the HR images. Human being is more sensitive to the high-frequency content of the image [11]. Inspired by 

this knowledge, we adopt selective patch process (SPP) to select source patches with high-frequency 

information. By doing so, we are able to obtain the more plausible reconstructed image and improve 

computational effectiveness. Finally, we paste source patches from HR images at the location of the target 

patches by exploiting the transformation parameters. We validate our method in terms of qualitative 

evaluation and quantitative evaluation. The experimental results show that our method outperforms state-of-

the-art SR methods. 

2. Related Work 
  SR is able to recover a visual pleasing high-resolution image from a low-resolution image. 

Interpolation-based SR, which uses a convolution kernel to estimate the missing pixel, is the simplest 

algorithm. Some unfriendly visual artifacts will be introduced if the recovered scene is complicated. External 

learning-based SR methods are able to achieve a promising result. These methods mainly rely on machine 

learning techniques to learn a robust relationship between LR images and HR images by using external large 

datasets. For example, Yang [11] combine dictionary learning method with sparse representation to 

reconstruct LR image. Liang et.al [12] train two dictionaries to represent images. Although external learning-

based SR methods obtain successful results, they are time-consuming, especially when the dataset is large.  

To reduce the calculation burden, internal patch matching based SR methods [13][14] have been 

proposed by researchers recently. Shi et.al [15] develop an effective non-local self-similarity dictionary 

learning method with low complexity. Huang et.al [14] propose a search strategy which allows patches 

perspective deformation. This method obtains excellent result if the scene contains a large number of self-

similar patterns.  

Recently, SR methods have developed rapidly due to the evolution of the deep learning technique [16]–

[18]. The first work of deep learning based SR method is super resolution convolutional neural network 

(SRCNN)[16]. They found the traditional sparse-coding-based SR method could be simulated as an end-to-

end mapping. The state-of-the-art CNN based SR framework is enhanced deep super-resolution network 

(EDSR) [19]. They optimize the training modules by removing the unnecessary parts. Their network is able 

to address SR with different upscale factors. While deep learning-based methods get excellent performance 

and more real-time computation, they rely on GPU during the training phase, which is limited in common 

devices. 

3. Proposed Super-resolution Framework 
The block diagram of mixed quality stereo images super-resolution is shown in Figure 1. The input of 

our framework is the high-resolution right view image and the low-resolution left view image. The output is 

the reconstructed high-resolution left view image. The proposed framework includes three parts: plane 

detection, informative patch selection, nearest neighbor field (NNF) estimation. Each part will be described 

in detail in the following sections. 

 

Fig. 1: Block diagram of the proposed framework. 
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3.1. Plane Detection 
Many algorithms [20]–[22] for plane detection have been proposed. We choose a relative standard and 

simple one [23]. The detected planes are used to guide the search of corresponding patches. 

To determine the orientation of the plane in the stereo image pair, we first detect the vanishing points 

(VPs) of two images respectively. The Cascaded Hough Transform is adopted since only one Hough space is 

accumulated in this transformation space. To reduce the computational complexity of the vanishing points 

process, it is operated on the extracted edges of the image.  We detect three groups of vanishing points since 

a normal image usually contains three plane orientation.  

After obtaining three groups VPs, we can calculate the plane orientation from every group. The 

parameters of the plane m  are represented by vanishing lines which connects VPs from two distinct areas. 

The vanishing lines can be formulated to: 

 
1 2 3[ , , ]m m m m TI l l l   (1) 

To ensure the corresponding area of each vanishing line, we use the Gaussian kernel to diffuse the spatial 

support. The Gaussian kernel can be expressed as: 
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where   is the bandwidth which controls the range of Gaussian kernel. Therefore, spatial support 

mS around vanishing lines can be obtained with: 

 m

mS h I    (3) 

The value distribution after kernel convolution is regarded as the plane location density. Visualization of 

vanishing point detection and spatial support is shown in Figure 2. Red, green and blue represent lines from 

three different orientation planes respectively. 

 

Fig. 2: (a)(c) Vanishing point detection for LR left to view and HR right view. (b)(d) The spatial support for LR left to 

view and HR right view. 

3.2. Informative Patch Selection 
We divide the input stereo image pairs lX  and hX into N patches 1{ }l N

i ix  , 1{ }h N

i ix  for better correspondence. 

To acquire image patches with high-frequency components, we represent features based on a high-pass filter. 

In the literature, a high-pass filter is used for sharpening images or extract the edges, texture, and noise of the 

image. The simplest filter is ideal high pass filter. In our method, the first- and second-order derivatives are 

used as the gradient operators. 

The gradient features are extracted by using five gradient operators: 
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(4) 

The extracted features are denoted as , , ,x y xx yyf f f f and fxy . Hence, the curvature difference can be expressed 

as: 

 || f | | f ||i i iD     (5) 
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where, 
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(7) 

 

By using these five gradient operators, we represent each patch by using five feature vectors, which are 

converted into one representative vector. According to the analysis of [24], different feature values indicate 

different information from images: 

1) For edges, | f |i

  is large but | f |i

 is small.  

2) For smooths, | f |i

  and | f |i

 are small. 

3) For noises, | f |i

  and | f |i

 are large. 

     Our objective is to select the patches with high-frequency information, so we define iD  as a median value. 

Based on this analysis, our method not only minimizes the distances of low-frequency base structures but 

also preserves the high-frequency detailed structures accurately. 

3.3. NNF Estimation 
To find the source patch in the HR image for target patch in the LR image, we convert it to the nearest 

neighbor field estimation (NNF) problem. The key idea of our cost function is the square of the Euclidean 

distance [25] which is also adopted by the classic feature detection algorithm SIFT [26]. The objective 

function is defined as: 

 
,

( , ) argmin ( , , )
i i

i i u i i i

i

E T

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t s

t s t s  (8) 

where iT  is the deformable parameters of source patches;  is the set of pixel indices of the stereo image 

pair. ( , , )u i i iE Ht s  can be expressed as: 

 2

2( , , ) || ( ) ( , ) ||u i i i i i iE T P S T t s t s  (9) 

where ( )iP t  is the intensity value of the pixel it  of the LR image and ( , )i iS Ts is the intensity value of the 

pixel is of the HR image. iT  is the transformation parameters from the source patch to target patch. To 

guarantee the accuracy of transformation parameters, we calculate it by combining the coordinates ,i it s  with 

the corresponding plane index im , which also be used in [14]. 

Suppose that 
imH  is the homograph which rectifies the planes in the scene. 1 2 3, ,h h h  are three vectors of 

imH . The source patches and target patches in the rectified space can be expressed as : 

 '
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Let ( , )x yd d  be the displacement vector from target to source patch positions in the rectified space. Hence, 

the position of the source patch '

is can be formulated as: 
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Therefore: 
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Finally, the source patches are pasted on the target patches by using the transformation parameter 
i

T .  

4. Experiment 
To acquire the mixed quality stereo images datasets for the experiment, we downsample left images from 

stereo images datasets and keep the HR right images. In order to evaluate our method, we compare its 

performance with several state-of-the-art algorithms: SRCNN [16], SelfExSR [14], MMPM [27]. Among 

these methods, [14][27] belong to traditional example based algorithms and [16] is deep learning-based 

algorithms. We use 5x5 patches in the experiment. The hardware configuration of this experiment was a 

computer equipped with a dual-core Intel Pentium G2020 29 GHz, and 4 GB of RAM, running Windows 10. 

All codes are implemented by C++. 

4.1. Qualitative Evaluation  
To illustrate the applicability of our method, we select different datasets from [28] and [29] for 

qualitative evaluation. In [28], they provide accurate indoor static stereo images. In [29], the stereo images 

are synthesized by Microsoft. Figure 3 shows the subjective comparison for 2x SR of three images. Partial 

regions are zoomed in red rectangles. Blurry is introduced by SRCNN[16]. Some unfriendly artifacts appear 

in the result of SelfExSR [14] and MMPM [27]. Our method has a more human-pleasure nature and sharper 

edges. That is because we utilize the HR right views as prior knowledge during the patch searching process. 

 
Fig. 3: Visual comparison for 2x super-resolution. (a) Bicubic (b) SRCNN [16] (c) SelfExSR [14] (d) MMPM [27] (e) 

Our method. 

4.2. Quantitative Evaluation  
We use three datasets for testing, including KITTI [30] and Middlebury [5]. Objective comparison with 

2x, 3x and 4x upscale factors is shown in Tabel I. The best result is marked by bold font. PSNR is used to 

measure the squared intensity differences of the reconstructed and ground truth image pixels. SSIM is 

adopted to measure the structural similarity between the reconstructed and ground truth image pixels. 

Compared with other methods, the proposed method improves PSNR by 1.39 on average and SSIM by 0.003 

on average. With the increase of upscale factors, the quality of all results decreases linearly. From these 

results, it is clear that for all cases, the quality of the LR left views has been improved significantly by the 

proposed method.  
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4.3. Time consumption  
We also evaluate the computation time of our method to verify if it meets the requirement of real-time 

application. Table II shows time consumption for 240x240 image super-resolution of SRCNN [16], 
SelfExSR [14], MMPM [27] and our method. Time consumption of our method is relatively longer than the 

other two. Thus, there is a trade-off between performance and time-consuming. 

TABLE 1. OBJECTIVE EVALUATION OF OUR METHOD WITH STATE-OF-THE-ART SR ALGORITHMS 

Dataset Scale SRCNN [16] SelfExSR [14] MMPM [27] Proposed 
Method 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Middlebury 

x2 31.48 0.9505 31.62 0.9511 32.21 0.9528 33.52 0.9561 

x3 28.76 0.9136 28.89 0.9087 29.33 0.9094 31.08 0.9128 

x4 27.11 0.8814 27.54 0.8854 27.69 0.8862 29.13 0.8924 

KITTI 

2012 

x2 29.27 0.9162 29.18 0.9136 29.74 0.9145 31.05 0.9137 

x3 26.98 0.8533 25.87 0.8548 26.31 0.8549 27.13 0.8607 

x4 25.34 0.8002 26.12 0.8015 27.44 0.8074 28.64 0.8133 

KITTI 

2015 

x2 28.50 0.9193 29.02 0.9197 30.05 0.9209 31.89 0.9218 

x3 26.19 0.8530 26.51 0.8537 27.83 0.8578 29.25 0.8594 

x4 24.44 0.7951 24.97 0.7960 25.75 0.7985 27.14 0.7994 

TABLE 2. TIME CONSUMPTION 

Methods SRCNN SelfExSR MMPM Our method 

Time(s) 7.06 4.02 3.88 5.41 

5. Conclusion
We have presented a novel super-resolution approach for mixed quality stereo images based on patch

matching, which avoids the estimation of parallax in the stereo images. To select the source patch for target 

patch accurately, we use the detected perspective planes in each plane as soft constraints to guide the patch 

searching. Selective patch process (SPP) is adopted for obtaining the high frequency information from source 

patch. Our best patch matching selection is actually a nearest neighbour field estimation (NNF) problem, 

which is represented by the solution of the defined cost function. Meaningful qualitative and quantitative 

measures verify the superior performance of our approach. In future work, we plan to focus on improving 

applicability of our approach in real system, such as hybrid vision system (stereo vision system with 

heterogeneous cameras).  
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