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Abstract. In recent years, Graph Convolutional Network (GCN) have been successfully applied to many 

graph classification problems. It has the capability to learn many types data that Convolutional Neural 

Networks (CNN) cannot handle, such as irregular data. However, we found that GCN can not completely 

capture the graph structure information and especially for inference on data efficiently. In this paper, we 

analyze the advantages and disadvantages of several models and propose two different methods of combining 

models. Based on that, we propose a new model by using ensemble learning Based on GCN. This model has 

the ability to capture the advantages of multiple models. Finally, we conduct our experiment on several 

datasets, and the experimental results show that our approach is effective. 
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1. Introduction
Network is the most common information carrier and form in modern society. It exists in a board

diversity of real-world scenarios, naturally, e.g., social networks [1], citation networks, protein-protein 

interaction networks [6], knowledge networks [5] and other networks [8]. Based on the widespread of 

complex information networks, research and analysis of such network has very high academic value and 

potential application value. Every network can be abstracted into a directed or undirected graph structure 

with weight. Traditional machine approaches often depend on summary graph statistics to extract structural 

information from graphs, [2], kernel functions [3], or well-designed manual or engineered features to 

evaluate graph local neighbourhood node structures [4] and limited by their high cost and inflexibility. 

However Deep Neural Network (DNN) which have recently proven to be powerful tools in many fields, such 

as natural language processing, computer vision and presentation learning, etc. Because the word embedding 

and other representation learning success, DeepWalk [9] is considered as the first graph embedding method 

based on representation learning, and SkipGram is applied to generate random walk. The goal of SikpGram 

model is to maximize the probability of word co-occurrence in windows and the probability of observing the 

neighbourhood of nodes under embedded conditions. node2vec [10], LINE [11] and other similar methods 

are also effective models. However, the parameters of these methods are in a low computational efficiency, 

because they are not shared among the nodes in the encoder, In the other hand, the embedding method 

directly lacks generalization ability in many scenarios [12]. 

Convolutional neural networks (CNN) which have use in computer vision and other fields, it is 

successful in the cases of data with basic Euclidean structure and in the cases where the invariance of these 

structures are built into the network used to model them. CNN increasing parameter sharing by performing 

spatial convolutions on data to exploit the regular structure data, and lowering their complexity. Recently, a 
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great number of methods have emerged to re-define the irregular structure data(graphics structure) 

convolution inspired by the success of CNN in the field of computer vision. These methods belong to graph 

convolutional network (GCN) [16] in geometric deep learning [13]. GCN has been applied to several real-

world scenarios, successfully, including matrix completion [14], program induction [15], semi-supervised 

learning [16], modeling relational data [17], etc. GCN has the capability to use the graphical structure 

information to extract local features and process irregular data directly of one-time connection (described 

more in Section 2). 

As same as other neural networks, GCN contains only one convolution model and interleaves linear 

layers, and with only one result output after each convolution. But the size of each layer, the activation 

function of each layer, and the number of layers all have an effect on the model's results, which are complex 

hyperparameters for the model. Although there are already many systematic methods and tools to adjust the 

hyperparameters, the adjusted parameters may still be unsatisfactory. In this paper we present a new model 

Hybrid Graph Convolutional Network (HGCN) inspired by ensemble learning based on GCN. We combine 

the advantages of multiple models and optimize the results.  

The contribution of our paper can be summarized as follows: 

 We analyze the advantages and disadvantages of the Graph Convolutional Network and Neural 

Network in the semi-supervised learning tasks. 

 We propose two different model combining algorithms in this task, and then, we compare and 

analyze the two algorithms. 

 Based on the above two points, we propose a novel graph semi-supervised classification model called 

the HGCN, which has the capability to combine the advantages of multiple models effectively. 

 We conduct extensive experiments on citation network. Experimental results prove the effectiveness 

and efficiency of the propose HGCN model. 

The rest of this paper is organized as follows. We describe preliminaries in Section 2. Our proposed 

model HGCN is presented with detailed analysis in Section 3. In section 4 we analysis the experimental 

results. At last we make a conclusion in Section 5. 

2. Preliminaries 

In this section, we provide definitions of basic graphical concepts and briefly describe the concept and 
derivation of GCN. the definitions will be used next. 

2.1. Graph and related concepts 
A generic undirected graph ( , ) , where {1,..., }N  is the set of   vertices, and    

is the set of edges connecting the vertices. The graph is equivalently described by the adjacency matrix or 

edges weight matrix 
N N , where its generic element 0ija   if and only if nodes i  and j  are 

connected. A graph signal [31] is a function : Ff V   associating to vertex n  a F -dimensional vector 

nx  and each dimension being denoted as a channel. 

2.2. Graph convolutional network 
The layer-wise propagation rule of  Multi-layer Graph Convolutional Network (GCN) can be defined 

as: 

 

1 1

( 1) ( ) ( )2 2( )l l lY SM WM Y
 

                                                            (1) 

where, A is the adjacency matrix, S    NA I   is mean all nodes of graph  are connected to themselves. 

( )lW  is a weight matrix . M  is a degree matrix, it is also a diagonal matrix. ii ijj
SM  . ( )    is  an 

activation function. 
( )l N DY   is the matrix of activations in the 

thl  layer and 
(0)Y X . 

In the graph domain, we use the normalized Laplacian matrix 

1 1

2 2L I D AD
 

   to define the 

convolution operation. 
TL U U   is denoted eigendecomposition, and U  is a matrix used to collect all of 
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eigenvectors of L .   is associated eigenvalues and is also a diagonal matrix. ( )diah g  , where 
N  , 

is a filter. Defined a spectral convolution on graphs as a multiplication of signal x  with filter in the Fourier 

domain: 

Tx U U xh h                                                                         (2) 

Here 
TU x  is the representation of x  in the Fourier domain. the graph Fourier transform of x is define as 

Tx xU . Because the eigenvectors form an orthonormal basis, an inverse graph Fourier transform can 

define as ˆ
i iX UX  when we regard eigenvalues as frequencies, and also. In the equation 2, multiplication 

with the eigenvector matrix U  and calculate its results computational complexity  is 
2( )N , so choice of 

( )h   determines the complexity of training. To alleviate this problem Hammond et al. [18] proposes to 

make the problem easy to handle by using a Chebyshev polynomial filter  kT x  up to 
thK  order on the 

eigenvalues: 

 
0

ˆ( ) ( )
K

k

k

Th 



                                                                    (3) 

where ˆ 2
max

I



    and the max  is the largest eigenvalue of L . ( )kT   is the Chebyshev polynomial of 

order k  defined as: 

 1 2( ) 2 ( ) ( )k K kT x xT x T x                                                               (4) 

with  0   1T x   and  1   T x x . In order to simplify expression results and avoid more complex 

recursive relationships, it is proposed in paper [16] to set   1k   and 0 1' '   for all channels and further 

approximate 2max  . Bring these expressions and values into the original equation (3), we get

1 1

2 2( ) .Nh x I D AD x 
 

   

As an example, a two layers GCN is given by: 

 
(0) (1)

1 0
ˆ ˆˆ ( ( ) )Y A AxW W                                                              (5) 

here, 0  and 1  are activation function, they can be ReLU and softmax respectively. A  is a symmetric 

adjacency matrix. 
(0) C HW   and 

(1) H FW   are the input-to-hidden and hidden-to-output weight 

matrix. H  is the number of features in hidden layer, and 

1 1

2 2ˆ SA M M
 

 . 

3. Methodology 
In the semi-supervised classification task, GCN can extract the structure information of the graph well, 

but the ability to fit the category information of the node is poor. The NN have better ability to fit the node 

category information, but the ability to obtain deeper graph structure information is poor, such as k -orders. 

In the models of GCN and NN, the number of nodes in each layer, the activation functions and other 

hyperparameters are fixed. There are two problems with this. The first question is how to choose the model, 

the second is how to set better hyperparameters. There are also a lot of techniques or methods for adjusting 

hyperparameters and model selection, but the best choice is not to make a choice. This is the best choice if 

we take advantage of all the models and combine the advantages of all models. However, this is the idea of 

ensemble learning. Therefore, we propose the HGCN model to combine the advantages of the two models. In 

the remainder of this section, we review the two models, and we will describe the HGCN model in detail 

later. 

3.1. Two types of models 
Neural Network (NN) Under normal circumstances, we can use the traditional Neural Network (NN) to 

predict the label y  by input x . An L -layer neural network can be defined as: 
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 1( )l l l l lh W h b                                                                       (6) 

here, l  is nonlinear activation function, 1

1
lN

lh 

   is the input form (l-1)-layer to l-layer, 1l lN N

lw 
  

are trainable weights, lN

lb   is bias. manifold regularization [20], neural graph machines [23], ladder 

networks [21], pseudo-labels [22], AtlasRBF [19], and many other techniques can be used to train neural 

networks in unlabeled data. 

Graph Convolutional Network (GCN) As previously stated, the GCN efficiently obtains the result by 

converting the convolution of the signal on graph domain into the inner product on frequency domain and 

simplifying the operation by Chebyshev polynomial. 

3.2. Hybrid graph convolutional network 
Ensemble learning which integrates multiple learning algorithms is famous for better performance in 

machine learning and it has been successful applied to many scenarios, include classification, computer 

vision, bioinformatics, etc. We propose a new model, Hybrid Graph Convolutional Network (HGCN), using 

ensemble learning based on GCN, and combining the advantages of convolutional neural networks and 

traditional neural networks. 

HGCN-Model1 In our model (HGCN), 1. We adjust the output of each different model, 2. Give 

different weights to the algorithms of different parameters and different models. 3. Integrate different 

algorithms and optimize results. Based on this, the model can be defined as: 

1

ˆ ( )
P

p p

p

Y w h


                                                                       (7) 

where   is nonlinear activation function, P  is the number of algorithms, ph  is the output of the algorithm 

for each model with different parameters and different models. pw  is the trainable weight to different 

algorithms. Note that the output of each algorithm is not a label prediction for each input, it is only an 

intermediate variable in the process of join into the ensemble learning. Because if it is predicted for a labels, 

the dimension of the outputs will reduce (In general, the number of labels will be smaller than the number of 

nodes in the hidden layer) and it will lose some important features. The model convergence speed is reduced, 

the details is shown in Fig. 1. We define this model is HGCN-Model1. 

HGCN-Model2 However, if we just linearly sum the algorithms for different parameters and different 

models, the output of different models may be in different intervals, so those models with larger output 

values may overwrite the model with smaller output values after weighted summation, it will make the 

results not get the advantages of all models and the accuracy of the overall results is degraded. Therefore, we 

sum the algorithms of different parameters of the same model and combine the results. So the model is 

defined as: 

 
1 1

ˆ ( ( ))
mPM

m o mp mp

m p

Y w w h 
 

                                                           (8) 

where   and o  is activation function, M  is the number of models, and mP  is the number of different 

parameters of the same model m (we call it an algorithm). mw  is the trainable weight to different models, 

mpw  is the trainable weight to different parameters of the same model m . mph  is the output of the algorithm 

for each model with different parameters and we see the output of each algorithm as a hidden layer of the 

overall model. We define this model is HGCN-Model2 (HGCN). The model structure is shown in Fig. 1. 
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Fig. 1: Hybrid Graph Convolutional Network (HGCN) model structure 

As an example, from the equation (5) and equation (6), a HGCN with two models (traditional neural 

networks with two layers and graph convolutional network with two layers) is given by: 

1 2

(0) (1) (3) (2) (0) (1)

1 1 1 0 1 1 2 2 3 2 2 2 2 2

1 1

ˆ ˆˆ ( ( ( ( ) )) ( ( ( ) )))
P P

o p p p o p p p p p

p p

Y w w A AXW W w w W W X b b      
 

          (9) 

where   is softmax function,  iw (i = 1, 2) is weight of the two models, 0  and 1  is the action function. 

1p  is the number of graph convolutional network, 2p  is the number of traditional neural network. 1pw  and 

2 pw  are the weights of different algorithms for different models. We assign different weights to each 

algorithm for each model and integrate their results. Finally, we use softmax to calculate the results. 

4. Experiment 
Our experiment mainly investigate the effectiveness of the HGCN over several kinds of datasets to 

validate that it can perform better than HGCN-Model1 other model that already exists. In the remainder of 

this section, we introduce the experimental datasets and the baseline methods, analyse the experimental 

details and results at the end of this section. 

4.1. Datasets and baseline methods 
Citeseer and Pubmed [29] are the citation network. Every dataset contains sparse bag-of-words feature 

vectors for each document , and the vectors are describing the relative frequencies of words, the links of 

citation between documents are in a list for every dataset. We construct a binary, symmetric adjacency 

matrix  from the citation links, and each document has a class label. We closely follow the experimental 

setup in paper [25]. The statistics of the dataset are in Table 1, the last column of Table 1 is the labeled nodes 

percentage in the datasets. 

Table 1: Dataset statistics 

Dataset Nodes Edges Classes Features Label rate 
Citeseer 3,327 4,732 6 3,703 3.6% 

Pubmed 19,717 44,338 3 500 0.3% 
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We test our model in semi-supervised document classification in citation networks, and compared the 

baseline method of Yang et al. [25] and Kipf et al. [16] including: 

 DeepWalk [9], a sampling method based on random walk, using skip-gram on graph embedding. 

 SemiEmb [26], Semi-supervised Embedding, combining an embedding-based regularizer with a 

supervised learner to perform semi-supervised learning. 

 LP [27], Label Propagation, a method of parameter learning based on entropy minimization. 

 ManiReg [28], attempt to use the geometry of the probability distribution by assuming that its support 

has the geometric structure of a Riemannian manifold. 

 Planetoid [25], develop both transductive and inductive variants in the method. 

 ICA [24], iterative classification algorithm using approximate reasoning. 

 GCN [16], perform Fourier transform on the graph information and perform semi-supervised learning. 

 KAF-GCN [7], based on GCN, and use kernel activation function that it is a non-parametric model. 

 NN, traditional dense neural network. 

a full all the baselines description can be found in the original papers. 

4.2. Experimental settings 
We use Citeseer, Cora and Pubmed dataset to evaluate our network. All data sets have been described 

above. The experimental model uses two sub-models, including GCN and NN. GCN and NN contain 18 

different parameters, respectively. It means we get 36 different cases of algorithms. We optimize a cross-

entropy loss given by: 

 
1

ˆ ,
L

F

lf lf

l f

Y lnY
 

                                                                 (10) 

here, L  is the set of have labels node. The loss is optimized using Adam algorithm [30] and train neural 

network weights 1w , 2w , mpw , 
(0)

mpW ,
(1)

mpW ,
(2)

mpW , 
(3)

mpW  and bias 
(0)

mpb , 
(1)

mpb  in equation (9). 

4.3. Experimental results 
In the experiment, we conducted a comparative experiment on HGCN-Model1, HGCN-Model2 and 

other baseline models. In the classification task, we exceeded the GCN model by 1.2% in the public dataset 

Citeseer, and also achieved good results in the dataset Pubmed. The experimental results are shown in Table 

2 and the loss situation is shown in Fig. 2. 

In Table 2, the NN model does not perform well in semi-supervised classification learning tasks, the 

accuracy rate is only 56.1% and 70.6% on datasets, while the accuracy of GCN is 70.3% and 79.0%. Under 

the integration of various models, HGCN-Model1 and HGCN-Model2 has the capability to take advantage of 

each algorithm, that GCN is good at extract the structure information of the graph, the NN have better ability 

to fit the node category information, based on these, HGCN-Model1 and HGCN-Model2 extract the hidden 

feature information in the training data more effectively, and converge faster.  

In Fig. 1, since the NN model is merged in HGCN-Model1 and HGCN-Model2, and NN can obtain the 

node information of the node more effectively, we can see that HGCN-Model1 and HGCN-Model2 converge 

faster than GCN. In HGCN-Model1, it directly integrates each algorithm, the result interval of the algorithm 

of different models may be different. Therefore, when learning weights, in equation (7) is not stable in the 

process of learning. This will cause the learning speed rate to decrease and the convergence rate to slow 

down. In HGCN-Model2, the nonlinear activation functions are used between the algorithms of different 

models, and the results of each algorithm are uniformly represented. In the process of learning, the 

parameters are more stable and the convergence speed is faster. 

Table 2: Results in terms of classification accuracy over the test set 

Method Citeseer Pubmed 
ManiReg 60.1 70.7 

SemiEmb 59.6 71.1 
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LP 45.3 63.0 

DeepWalk 43.2 65.3 

ICA 69.1 73.9 

Planetoid 64.7 77.2 

NN 56.1 70.6 

GCN 70.3 79.0 
KAF-GCN 70.9 - 

HGCN-Model1 70.5 79.0 
HGCN-Model2 71.5 79.0 

5. Conclusions 
Network representation on large-scale information networks has important applications in tasks such as 

node classification and link prediction, and research is of great significance. In this paper, we proposed a 

new network representation method that combine multiple models and multiple model parameters including 

graph convolutional network and traditional neural networks to learn graph representations and to perform 

graph classification. Our Hybrid Graph Convolutional Network (HGCN) was tested on multiple datasets and 

the results showed that the model performed well. However, there is a limitation with the current work. Since 

the adjacency matrix that representing the graph structure should be input into the model during the initial 

training process, our model is difficult to extend. So in the future, we may be able to dynamically add 

network structures and other information by increasing the convolution depth, and the model should be 

improved so that it is an online learning algorithm which builds useful incremental result. 

 
Fig. 2: Hybrid Graph Convolutional Network (HGCN) model structure 
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