
 A new Neighborhood Structure and its fast Evaluation Strategy in
using Iterated Local Search to Solve Single Machine Scheduling

Hongyun Xu , Quan OuYang

School of Mathematics & Computer Science, JiangHan University, Wuhan, China

Abstract. In this paper, a new neighborhood structure called Block Exchange and its fast evaluation
strategy are proposed when using the Iterated Local Search (ILS) algorithm to solve the single machine
scheduling problem without setup times. Applying the proposed ILS algorithm which adopts the Block
Exchange neighborhood and fast evaluation strategy to solve 125 public benchmark instances, we achieve
highly competitive results compared with the other two ILS algorithms adopt two neighborhoods widely used
in the previous literature for single machine scheduling, respectively. Specifically, ILS with Block Exchange
neighborhood and fast evaluation strategy finds the best-known results for all the 125 instances, while the
other two ILS algorithms can not obtain the best-known results for 97 and 92 instances. The experimental
results show that the proposed Block Exchange neighborhood and its fast evaluation strategy are highly
effective and efficient.

Keywords: single machine scheduling, neighborhood structure, Iterated Local Search, Block Exchange.

1. Introduction
The single machine scheduling problem without setup times studied in this paper can be described as

follows: Suppose N is the total number of jobs to be processed in one machine. Each job j has a processing
time pj, a weight wj, and a due date dj. The start time of each job is the completion time of the previous job in
the job sequence. Using 1 2 3{ , , ,..., }(,)N i j i j         to represent a processing sequence, where
πj denotes the j-th job in the entire processing sequence and its completion time is denoted by Cj,  jΔf  .
The tardiness of the πj is Tj, max{ ,0}

jj jT C d  . Then the total tardiness of π is denoted by T,
 1

N

j j
j

T w T


 . So,
the single machine scheduling problem without setup times can be denoted as 1|| j jw T , a special case of
1| |ij j js w T , has been shown to be strongly NP-hard [1],[2]. The 1|| j jw T problem is to find a job sequence
that minimizes T.

There are several heuristic and metaheuristic algorithms, for instance, particle swarm optimization
algorithm, tabu search algorithm, and variable neighborhood search, developed to solve the 1|| j jw T

problem in [3]-[5].

2. Iterated Local Search algorithm
Iterated Local Search (ILS) is a simple but widely used heuristic algorithm. It uses the local search

technique and the perturbation mechanism to search the solution space. The local search technique makes the
current solution could be converged to the local extreme. The perturbation mechanism is responsible for
jumping out of the local optimal to reach a new search space. The ILS algorithm consists of four parts: [1]
Generate Initial Solution: The initial solution is usually composed of some constructive heuristic algorithm
or randomly generated; [2] Local Search; [3] Perturbation: the method to jump out of the local optimal; [4]

 Corresponding author. Tel.: +86 18086623297.
E-mail address: oyq8888@163.com (Quan OuYang).

ISBN 978-981-14-1684-2
Proceedings of 2019 the 9th International Workshop on Computer Science and Engineering

 Hong Kong, 15-17 June, 2019, pp. 1-5

1

mailto:oyq8888@163.com
admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本
doi:

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本
10.18178/wcse.2019.06.001

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本
(WCSE 2019 SUMMER)

Acceptance Criterion: the algorithm stops when the certain conditions met. The basic framework of the
iterated local search algorithm is shown as follows:

Step 1: s ←generate initial solution
Step 2: s′← local search (s)
Step 3: repeat
Step 4: s* ← perturbation (s′)
Step 5: s*′← local search (s*)
Step 6: s′← acceptance criterion (s′, s*′)
Step 7: until stop condition met
In our ILS algorithm, the initial solution is generated randomly. At the end of each round of local search,

if s*′ is better than s′, we replace the s′ with s*′. The proposed ILS algorithm stops when the time limit is
reached. For a local search algorithm, the definition of the neighborhood plays an important role. In our ILS
algorithm, we proposed a new neighborhood called Block Exchange, which has never been considered for
the single machine scheduling to our best knowledge. At the same time, in order to evaluate the
neighborhood solutions in an efficient way, we employ a fast evaluation strategy. The perturbation process is
to randomly execute the Block Exchange for the current job sequence. In the following, we present the Block
Exchange neighborhood and the fast evaluation strategy of the ILS algorithm in detail.

3. Block Exchange neighborhood structure
In this paper, we propose a new neighborhood structure, called Block Exchange, which is composed of

all the feasible neighborhood solutions after Block Exchanges in solving 1 || j jw T problem. In author’s
previous study [6], a new neighbourhood structure called Block Move was proposed to solve single machine
scheduling problem with setup times. Block Move and Block Exchange have some similarities and
differences. For example, they both are operating on the Blocks, and Block Move is to move one Block to
the other position, while Block Exchange is to exchange two Blocks’ positions.

The Block Exchange is defined as follows: in the current job sequence 1 2 3{ , , ,..., }N     , exchange
two l consecutive jobs with the start positions of m and n, respectively (the l consecutive jobs are called
block, Block). The range of m, n, and l are m<n, 1 2 1m N l    , 1m l n N l     , 1 / 3l N  ,
respectively. The Block Exchange can be simply denoted as Block Exchange (m, n, l). For example, the
Block Exchange (3, 10, 4) is performed in a job sequence of 15 jobs, the process of which is shown in Fig 1.

Fig. 1: process of the Block Exchange (3, 10, 4)

In the previous papers for the single machine scheduling, the other neighbourhoods, swap and 2-edge
exchange, were employed in [7], which are special cases of our Block Exchange neighborhood where l=1
and 2, respectively.

4. Fast Evaluation Strategy for the Block Exchange neighborhood
The evaluation of the neighborhood solution needs the biggest amount of computation time in the local

search algorithm. The efficient evaluation strategy can not only improve the efficiency of the algorithm, but
also improve the probability of finding the better solution. In this paper, based on the strategy of the Block
Move neighborhood structure and the fast incremental evaluation technique proposed by Xu et al. [6] in
solving the single machine scheduling with sequence-dependent setup times, a new Block Exchange

2

neighborhood structure and its fast evaluation strategy are proposed to solve the single-machine scheduling
problem without setup times. The main idea is that for the job sequence π, the new job sequence π’ is
obtained after carrying out the Block Exchange. There is increment Δ between the jobs affected in job
sequence π and π’.

Calculated the increment Δf(πj) of the jobs πj affected by Block Exchange and obtained the objective
function value Δf(π) of the new job sequence π' by using the sum of Δf(πj) . In this way, the computational
complexity can be greatly reduced and achieving a fast evaluation strategy for the Block Exchange
neighborhood solutions.

Fig. 2: illustration of the fast evaluation strategy for Block Exchange (m, n, l)

Taking the Block Exchange (m, n, l) as an example to illustrate the fast evaluation strategy proposed in
this paper. As shown in Fig. 2, after the Block Exchange (m, n, l), the affected jobs are included in the blocks
①, ②, and ③. t1 represents the start time of the Block ①, the first position and the length of which are n
and l; t2 represents the start time of the Block ②, the first position and the length of which are m+l and n-m-l;
t3 represents the start time of the Block ③, the first position and the length of which are m and l.

 t1’, t2’, and t3’ represent the start times of the Blocks ①, ②, and ③ after executing Block Exchange
(m, n, l), respectively. Δ1,Δ2, and Δ3 denote the time increments of Blocks ①, ②, and ③ after the Block
Exchange (m, n, l), respectively, and the formula of which are as follows:

The detailed calculation procedures of Δ1, Δ2, and Δ3 are as follows:

(1)

(1)

(1)

1

2

3

n

m l

m

t C

t C

t C









 








 (1)

(1)

(1)

(1)

1'

2 ' 1

3' 2

m

n l

n

t C

t C

t C









 





  

   (2)

(1) (1)

(1) (1)

(1)(1)

1 1' 1

2 2 ' 2 1

3 3' 3 2

m n

n l m l

mn

t t C C

t t C C

t t C C

 

 

 

 

   



    

      

      
 (3)

(1) As shown in Fig. 2, after the Block Exchange (m, n, l) on the job sequence π, the value of time
increments Δ of jobs πj varies according to the location of πj:

When the job πj is located in the Block ①,   ; 1 , 1j n n l      ;

When the job πj is in the Block ②,   ; 1 , 2j m l n      ;

1 1' 1; 2 2' 2; 3 3' 3t t t t t t        

3

When the job πj is located in the Block ③,  ; 1 , 3j m m l      .

(2) As shown in Fig. 2, the affected job πj after the Block Exchange (m, n, l) on job sequence π,

 ,..., 1j m n l   . For the job πj,  jf  is considered in the following cases:

When the completion times of the job πj before and after the Block Exchange (m, n, l) are both less than
the due date, i.e.,

j j
C d  and

j j
C d    .The weighted tardiness of job πj before and after the Block

Exchange operation both are zero, i.e., () 0jf   .

When the completion time of the job πj before and after the Block Exchange (m, n, l) both are more than
the due time, i.e.,

j j
C d  and

j j
C d    , then ()

jjf w   .

When the completion time of the job πj before the Block Exchange (m, n, l) is less than the due date,
i.e.,

j j
C d  , and the completion time after the Block Exchange (m, n, l) is more than the due date, i.e.,

j j
C d    ，then () ()

j j jjf w C d       .

When the completion time of the job πj before the Block Exchange (m, n, l) is more than the due date, i.e.,
j j

C d  , the completion time after the Block Exchange (m, n, l) is less than the due date, i.e.,

j j
C d    ，then () ()

j j jjf w C d      .

(3) Find the value Δf (πj),  ,..., 1j m n l   , and calculate    
1

j
j m

n l

f f 


 

   . And the objective

function value f (π') of the job sequence π' after the Block Exchange (m, n, l) is obtained, i.e.,
     'f f f     , in which f (π) is the objective function value of the job sequence π.

5. Computational results
5.1. Experiment scheme

In order to show the effectiveness of the newly proposed Block Exchange neighborhood and the fast
evaluation strategy, we compare them with two previously used neighborhoods, swap and 2-edge exchange.
Thus, three ILS algorithms, denoted by ILS_BE, swap, and 2-edge, are designed, which adopt the Block
Exchange neighborhood and fast evaluation strategy, swap neighbourhood, and 2-edge exchange
neighborhood, respectively.

The benchmark data of the 1 || j jw T problem widely used in the literature consisted of 125 problem
instances, each with 40 jobs [8]. The three ILS algorithms, ILS_BE, swap, and 2-edge, both are programmed
in C++ and compiled on a PC using Linux with 2.6 GHz CPU and 64.0 Gb RAM. For the three ILS
algorithms, we solved each problem instance independently for 100 times using different random seeds,
subject to a time limit of 50 CPU seconds.
5.2. Comparisons with other two neighborhoods

We summarize the comparisons of three ILS algorithms, swap, 2-edge, and ILS_BE, with the best-
known results for the 125 instances in Table 1, in which the numbers of better, equal, and worse solutions
compared with the best-known results are presented.

Table 1.summary of comparing the results of three ILS algorithms with the best-known results
swap 2-edge ILS_BE

number of improved solutions 0 0 0

number of equal solutions 33 28 125

number of inferior solutions 92 97 0

number of all solutions 125 125 125

In Table 1, we observe that ILS_BE algorithm is quite competitive in terms of this criterion. Comparing
the results of three ILS algorithms, swap, 2-edge, and ILS_BE, with the best-known results, the numbers of

4



equal solutions were 33, 28, and 125, respectively. And the numbers of worse solutions were 92, 97, and 0,
respectively. From Table 1, we conclude that the ILS_BE algorithm outperforms the other two ILS
algorithms in terms of solution quality. These results show the efficacy of the proposed Block Exchange
neighborhood and its fast evaluation strategy.

6. Conclusion
In this paper, a new neighborhood structure Block Exchange and its fast evaluation strategy are proposed

to minimize the total weighted tardiness when using the ILS algorithm to solve the 1 || j jw T problem. The
Block Exchange neighborhood expands the search space, while the fast evaluation strategy improves the
search efficiency to reduce the calculation time. From the comparisons of experiments, it is proved that the
Block Exchange neighborhood and the fast evaluation strategy can improve the efficiency and find the better
solutions in a certain extent. Although this paper mainly discusses the single machine scheduling, it provides
the new ideas to the complex scheduling problem and other combinatorial optimization problem, which has
certain research significance.

7. Acknowledgments
The research was supported by the Doctoral Scientific Research Foundation of JiangHan University,

WuHan (Grant no. 1008-06280004).

8. References
[1] Lawler E L. A “pseudopolynomial” algorithm for sequencing jobs to minimize total tardiness. Annals of discrete

Mathematics, 1977, 1:331–342

[2] Lenstra J K, Rinnooy Kan A, Brucker P. Complexity of machine scheduling problems. Annals of discrete
mathematics, 1977, 1:343–362

[3] Tasgetiren MF, LiangYC, SevkliM, Gencyilmaz G. Particle swarm optimization and differential evolution for the
single machine total weighted tardiness problem. Int J Prod Res 2006; 44(22): 4737–54.

[4] Ü Bilge, Kurtulan M, Kıraç F. A tabu search algorithm for the single machine total weighted tardiness problem.
Eur J Oper Res2007; 176:1423–35.

[5] Wang X, Tang L. A population-based variable neighbourhood search for the single machine total weighted
tardiness problem. Comput Oper Res 2009; 36: 2105–10.

[6] Xu H, Lü Z, Cheng T C. Iterated Local Search for single-machine scheduling with sequence-dependent setup
times to minimize total weighted tardiness[J]. Journal of Scheduling, 2014, 17(3):271-287.

[7] Kirlik, G., & Oguz, C. (2012). A variable neighbourhood search for minimizing total weighted tardiness with
sequence dependent setup times on a single machine. Computers & Operations Research, 39(7), 1506–1520.

[8] Potts C N, Wassenhove L N V. A Branch and Bound Algorithm for the Total Weighted Tardiness Problem[J].
Operations Research, 1985, 33(2):363-377.

5

	空白页面

