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Abstract. An audio  fingerprint, which is a compact content-based digest of an audio signal, is widely used 

to quickly  locate perceptually similar songs in an audio database. For a million -song library, memory 

imposes a restriction for speedy and correct music identification and thus demands a compact fingerp rinting 

system. This paper focuses on reducing memory requirement of fingerprint storage while preserving the 

robustness of fingerprints to common distortions such as compression, noise addition, etc. In this system, a 3- 

sec audio clip is represented by a 2712-bit fingerprint block. It significantly reduced the storage when 

compared with the Philips Robust Hashing (PRH), one of the dominant researches of audio fingerprinting, 

where a 3-sec audio clip was represented by an 8192-bit  fingerprint b lock. Experimental results also showed 

that the reliab ility and robustness of the proposed fingerprinting system outperforms the PRH under various 

distortions, especially linear speed changes and pitch shifting. 
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1. Introduction 
Music is one of the most popular types of online information these days and billions of audio data are 

streaming through the content providers such as iTunes, Netflix, Pandora, and YouTube. These trends have 

posed a major challenge for searching, retrieving, and organizing music contents for million-song libraries. 

Music information retrieval (MIR) has gained its popularity in this multimedia age and its practical services 

include music identification, automatic broadcast monitoring, and detection of unauthorized music sharing.  

Audio fingerprinting, a compact content-based signature of an audio recording, is best known for its 

ability to link unlabeled audio to its corresponding metadata (e.g. artist and song name), regardless of the 

audio format. It is a smart technology to identify the relevant contents correctly from a small piece of query 

music, which is generally kept only 3~5 seconds duration. Even though the query may have various types of 

noise and distortion, the underlying source signal is identical to the matching segment of the database. 

Efficient fingerprints and matching algorithms can identify the distorted versions of a recording as the same 

audio content. Audience measurement, broadcast monitoring, naming the tune, metadata collection, and 

finding duplicates are the well-known applications of audio fingerprinting technology. 

A wide variety of audio fingerprinting methods have been proposed in the literature based on different 

acoustic features. In 2000, Logan [1] proposed Mel frequency cepstral coefficients (MFCCs) based method 

for music modelling. The author demonstrated that de-correlated MFCC vectors were appropriate for both 

speech and music spectra. Allamanche et al. [2] proposed a new methodology for audio fingerprinting – 

spectral flatness. As per experimental results, spectral flatness measure (SFM) features only perfectly worked 

under clean environments. Haitsma et al. [3] developed a well-known fingerprint extraction method, namely 

Philips Robust Hashing (PRH), in which each 11.6 ms frame was represented by a 32-bit sub-fingerprint 

calculated based on the energy band differences both in time and frequency domains. Wang [4] who works 

for Shazam also proposed an algorithm by using energy peaks in a frame and forming spectral pair 
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landmarks. The local maxima within a defined section were grouped into pairs and nine spectral peaks were 

considered as a match score. Ke et al. [5] improved the performance of a fingerprinting scheme by utilizing 

the AdaBoost computer vision technique although it needed relatively longer query clips. Park et al. [6] 

introduced alternatives to the frequency-temporal filtering combination. Their method achieved robustness to 

background noise in a real situation, but there was no synergy of the filtering combination anywhere. Yao et 

al. [7] improved the scalability of big audio data by applying sampling and counting method and inverted 

index for audio sub-fingerprints. Although the method increased computational complexity for sampling and 

counting, their audio retrieval time was desirable. 

Most of the former researches focused on the accuracy of music identification rather than the size of 

fingerprint database and retrieval speed. However, both of those aspects are increasingly important these 

days as the size of song libraries are tremendously growing day by day. In this paper, we modify the PRH 

method of Haitsma et al. [3] with the aim of generating a more compact fingerprint database for speedy 

music retrieval with acceptable accuracy. 

The rest of the paper is organized as follows. Section 2 describes the literature review in which we focus 

the PRH method as our mainly cited literature. Section 3 discusses the space-saving architecture of the 

proposed method in detail. Section 4 presents the comparative analysis of the reliability and robustness of the 

proposed method and the PRH. Finally, Section 5 concludes the proposed research work. 

2. Literature Review 
The PRH method [3], whose overall scheme is shown in Fig. 1, is one of the most influential works on 

audio fingerprinting. In that method, fingerprint extraction is done for windowed time intervals (i.e. frames); 

thus, an input audio is segmented into frames, each with a length of approximately 0.4 seconds. The frames 

are then weighted by a Hanning window to smooth signal discontinuity with an overlap factor of 31/32. Then, 

Fourier transform is computed on every frame and only the absolute value of the spectrum is retained as 

many important audio features live in the frequency domain and the Human Auditory System (HAS) is 

relatively insensitive to phase as well. Then, in order to get a 32-bit sub-fingerprint for each frame, 33 non-

overlapping and logarithmically spaced frequency bands are segmented from 300Hz to 2kHz (the most 

perceptible range by the HAS). Energy in each frequency band is then computed and a 32-bit hash string, i.e. 

sub-fingerprint, is obtained by computing the sign of the energy differences (simultaneously along the time 

and frequency axes) as defined by Eq. 1. 

 

 

where EB(n,m) is the energy of band m of frame n and H(n,m) is the m-th hash bit of the frame n. A single 

32-bit sub-fingerprint does not contain enough information to match the original audio. Thus, a fingerprint 

block is composed by combining all 256 sub-fingerprints for a 3-sec audio recording. 

 

Fig. 1. Overview scheme of PRH fingerprint extraction 

As the sizes of today song libraries are increasing, some flaws of the PRH method have already been 

pointed out in the literature.  
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 The first problem is the fingerprint block size of 8192 bits (=32 x 256) for a 3-sec audio clip. It needs 

huge amount of memory allocation. 

 Another problem is the big index size of the 32-bit Lookup Table (LUT) which is used for matching 

process. The 2
32

 (=4G) entries in the LUT are too large to be resident in memory. 

 The PRH also assumes that at least one of the 256 sub-fingerprints is error-free under „mild‟ signal 

degradations. It ignores heavy signal degradation. 

 Another problem of the PRH method is the „single match principle‟ algorithm. It ignores the multiple 

occurrences of matching. 

In this paper, we focus our attention on solving the first two problems of the PRH: reducing the size of 

the fingerprint block and the LUT. The proposed system chooses the MFCC features over Fourier transform 

spectral information to compose a fingerprint. The reasoning behind is that the MFCC is based on the Mel-

scale which is the human ear scale. Thus, it should be more appropriate for extracting a compact digital 

summary of a sound that can well approximate the human perception. Details of the proposed method are 

explained in the following section. 

3. Proposed Method 
The comparative system flow of the proposed method and the PRH is shown in Fig. 2. As in the PRH, 

the proposed method extracts a sub-fingerprint block from each 11.6 ms frame. The main difference is that 

the proposed method considers the human ear scale-based Mel features as the fingerprint and whereas the 

PRH uses the FFT-based spectral information. The detailed framework of the proposed audio fingerprint 

extraction is shown in Fig. 3. 

 

Fig. 2. Comparative system flow for fingerprint extraction of the PRH and the proposed method 

 

Fig. 3. Proposed framework for audio fingerprint extraction 
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3.1. Pre-processing 
 Down sampling: Input audio is firstly down-sampled to a mono Pulse Code Modulation (PCM) 16-

bit audio stream with the sampling rate of 5512 Hz. This process eliminates the effect of different 

playback speeds and thus improves the accuracy of the derived fingerprints. Moreover, this process 

also compresses the signal so that more compact fingerprints can be achieved, e.g. it just retains only 

about 1/8 of the original samples for a 48kHz sampled signal.  

 Pre-emphasis: As defined by Eq.2, a pre-emphasis filter is then applied on the down-sampled signal 

to balance the frequency spectrum by boosting the signal energy in high frequencies. 

 

where the typical value for the filter coefficient α is usually between 0.9 and 1.0, and we set as 0.97 in 

our experiments. 

 Framing and overlap: After pre-emphasis, the resulting signal is split into short-time frames: 370 

ms frames with 11.6 ms frame shift duration.  

 Windowing: In order to reduce discontinuities between frames or to smooth the first and last points 

in a frame, the Hanning window defined by Eq. 3 is applied on each frame. 



where N is the window length. 

3.2. MFCC Feature Extraction 
 Fast Fourier Transform (FFT): The FFT is then applied on each frame of the windowed signal to 

extract the spectral information. A good approximation of the frequency contours of the signal is 

obtained by concatenating adjacent frames. 

 Bandpass filter: The frequency spectrum yielded by the FFT is then warped according to the Mel-

scale in order to adapt the frequency resolution to the properties of the human ear. The spectrum is 

segmented into a number of critical bands ranging from 300Hz to 2kHz (the most relevant spectral 

range in the HAS) by means of a Mel filterbank which typically consists of overlapping triangular 

filters. Those filters capture the energy at each critical band and give a rough approximation of the 

spectrum shape. Mel scale for a given frequency f in HZ is computed by using Eq. 4. The mapping 

between the frequency in Hz and Mel scale is linear below 1kHz and logarithmic above 1kHz. 

 

  

 Discrete Cosine Transformation (DCT): The DCT is then applied to the logarithm of the filterbank 

outputs to convert the log Mel spectrum into time domain. The result is a set of Mel frequency 

cepstral coefficients that is called acoustic vectors. For a 3-sec audio excerpt, this system generates 

the 13x227 MFCC feature vectors. The size of the feature vectors depend on the frame size, frame 

shift duration, windowing method, and pre-emphasis values. 

3.3. Audio Fingerprint Extraction 
For a compact fingerprint representation, the MFCC features are converted to a binary representation as 

follows. With an inspiration from the bit derivation process of the PRH, sign differences between the MFCC 

features of the adjacent rows and columns of the 13x227 feature vectors are calculated. After this process, a 

2712-bit (=12x226) fingerprint block is obtained for a 3-sec audio clip, and it can later be used for matching 

and identifying the query audio clips. 

As stated by the PRH, these binary features have effectual advantages because they can be faster to 

compute, more efficient to compare, and more compact to store. Compared to the PRH, the proposed method 

reduces the 8192-bit fingerprint block for a 3-sec audio clip of the PRH to 2712-bit. By this way, memory 

requirement for fingerprint storage is much decreased and retrieval speed is increased. However, a good 

fingerprinting system needs not only to be compact but also to provide accurate music identification. The 

following section presents the reliability and robustness analysis of the proposed method.  
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4. Experiments 

4.1. Research Aided Tools 
 Matlab R2018a: Most of the experiments are simulated in Matlab. 
 Audacity 2.3.0: Audacity is a free, open source, cross-platform software that supports a variety of 

audio editing functions. Audacity is used in this system to edit the audio clips by injecting common 

signal distortions such as adding background noise, pitch shifting, speed changes, etc. 
 Microsoft Visual Studio 2017: Some parts of the proposed method such as re-sampling audios, 

converting to mono, framing, etc are implemented in C# by using Microsoft‟s famous IDE. 

4.2. Runtime Environment 
 Operating System: Microsoft Windows 10 Enterprise 64-bit 
 Processor: Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz (8 CPUs) 
 Memory: 4096MB RAM 

4.3. Comparative Analysis of Fingerprint Size 
Table 1 lists the four audio excerpts used in the experiments. Aforementioned in this paper, the proposed 

method extracts a 2712-bit fingerprint block for a 3-sec audio, whereas the PRH extracts an 8192-bit block. 

The last column of Table 1 states the size of the fingerprints yielded by the PRH and the proposed method in 

kilobytes. Averagely, the proposed method requires 27.4 kB fingerprint storage for a 4-min and 4-sec long 

audio clip, and whereas the PRH requires 82.6 kB. The proposed method saves approximately two-third of 

the storage space required by the PRH. Thus, it proves that the proposed method can provide speedy music 

retrieval and it is more appropriate for million-song libraries.  

Table 1. Audio Clips 

No. Song Name Artist Duration (min:sec) 
Fingerprint Size (kB) 
Proposed PRH 

1. A whole lot of Rosie AC/DC 5:33 36.7 111 

2. O Fortuna Carl Orff 2:39 17.5 53 

3. Say what you want Texas 3:53 25.7 77.7 

4. 
Success has made a 
failure of our home 

Sinead o‟Connor 4:28 29.6 89.3 

Average  4:38 27.4 82.6 

4.4. Comparative Analysis of Fingerprint Robustness 
In order to answer the next theoretical question of how robust these space-saving audio fingerprints are, 

resilient experiments for various signal degradations are carried out and compared the results with the PRH. 

The robustness and reliability of the proposed fingerprinting system is evaluated by means of the bit error 

rate (BER), defined by Eq. 5. The BER is calculated by comparing the transmitted sequence of bits to the 

received bits and counting the number of errors. It is used to estimate the similarity between two audio clips. 

    BER = Number of errors / Number of bits.    (5)

If the BER between the query fingerprint block and one fingerprint segment stored in the database 

beforehand is lower than the threshold T, it is considered to be a reliable match. A number of experiments 

have proved that when the BER is less than T=0.35, matching results can be regarded as effective [3]. 

Firstly, robustness of the proposed method to „linear speed changes‟ of the audio clips is evaluated by 

changing the speed of the audio clips in Table 1 from -4% to +4% in Audacity. Those speed changes affect 

both the tempo and pitch of the original songs. The edited audio clips are then assumed as query and their 

fingerprints are matched against those extracted from the original songs. The resulting BERs for the PRH 

and the proposed method are shown in Table 2 and also visualized in Fig. 4. The proposed method is well 

robust against the speed changes from -2% to +2%, i.e. BERs are under threshold. Compared with the PRH, 

it is seen that the proposed method is getting more robust than the PRH when speed changes rates are higher. 
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The robustness of the proposed method to various kinds of signal distortions is also tested by editing the 

audio clips in Table 1 by adding the effects of Hard Clip, Soft Clip, Heavy Overdrive, Valve Overdrive, and 

Blues Drive Sustain. These distortions are implemented with the factory presets values of Audacity. The 

resulting BERs are shown in Table 3 and illustrated in Fig. 5. The results show that the proposed method 

preserves its robustness very well: all the BER values are under threshold. However, it does not perform well 

as much as the PRH. 

Robustness of the proposed method to „pitch shifting‟ is also shown in Fig. 6 and Table 4. The query 

clips are edited by shifting their pitch from -4% to +4%. It can be clearly seen from Fig. 6 that the proposed 

method perfectly preserves its robustness under pitch shifting as well. As for the PRH, its robustness is 

getting decreased when the percentage of pitch shifting is severer.  

The robustness results of the proposed method and the PRH to different noise effects are shown in Table 

5 to Table 7 and illustrated in Fig. 7 to Fig. 9. For all kinds of noise types, the PRH outperforms the proposed 

method although both methods well preserve their robustness. Among the noise types, the proposed method 

is more robust to the pink and brownian noises rather than the white noise. 

Robustness of the proposed method to „signal compression‟ is also analyzed for various compression 

rates: 128 kbps to 8kbps by using LAME MP3 encoder. The resulting BER values are shown in Table 8 and 

illustrated in Fig. 10. It can be seen that the degrees of robustness of the PRH and the proposed method to 

compression are almost the same. When the compression rate is getting higher, the ir robustness is getting 

lower. Both methods can preserve their robustness to compression rate of up to 32kbps. 

 
Fig. 4. Comparative test for linear speed changes  

 
Fig. 5. Comparative test for distortion types  
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Fig. 6. Comparative test for pitch shiftings  

 

Fig. 7. Comparative test for white noise addition 

 

Fig. 8. Comparative test for pink noise addition  

 

Fig. 9. Comparative test for brownian noise addition 
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Table. 2. Comparative test for linear speed changes 

No. 
Linear Speed 

Changes 

(percentage) 

Bit Error Rates 
Proposed 

Method 

PRH 

Method 

1. -4 % 0.4346 0.4499 
2. -3 % 0.3740 0.4029 

3. -2 % 0.2982 0.3120 
4. -1 % 0.1780 0.1812 

5. 1 % 0.1710 0.1777 

6. 2 % 0.2787 0.3021 
7. 3 % 0.3522 0.3884 

8. 4 % 0.4099 0.4463 

Average  0.2774 0.2956 
 

Table. 3. Comparative test for different distortion types 

No. Distortion 
Types 

Bit Error Rates 
Proposed 

Method 

PRH 

Method 

1. Hard Clip 0.0946 0.0726 
2. Soft Clip 0.0816 0.0575 

3. 
Heavy 

Overdrive 
0.2245 0.1912 

4. 
Valve 

Overdrive 
0.1465 0.1059 

5. 
Blues Drive 

Sustain 
0.0600 0.0409 

Average  0.1214 0.0936 
 

Table. 4. Comparative test for pitch shiftings 

No. 
Pitch 

Shifting 

(percentage) 

Bit Error Rates 
Proposed 

Method 

PRH 

Method 

1. -4 % 0.2401 0.3304 

2. -3 % 0.1949 0.2573 
3. -2 % 0.1762 0.2119 

4. -1 % 0.1517 0.1558 
5. 1 % 0.1594 0.1715 

6. 2 % 0.1819 0.2040 
7. 3 % 0.2039 0.2631 

8. 4 % 0.2317 0.3296 

Average  0.1711 0.2137 
 

Table. 5. Comparative test for white noise addition 

No. 
White Noise 

Level 

(amplitude) 

Bit Error Rates 
Proposed 

Method 

PRH 

Method 

1. 0.01 0.2174 0.1738 
2. 0.02 0.2777 0.2322 

3. 0.03 0.3022 0.2630 
4. 0.04 0.3119 0.2857 
5. 0.05 0.3431 0.3039 

Average 0.2905 0.2517 
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Table. 6. Comparative test for pink noise addition 

No. 
Pink Noise 

Level 

(amplitude) 

Bit Error Rates 
Proposed 

Method 

PRH 

Method 

1. 0.01 0.1324 0.1184 
2. 0.02 0.1609 0.1453 
3. 0.03 0.1881 0.1583 

4. 0.04 0.2019 0.1686 
5. 0.05 0.2101 0.1870 

Average 0.1787 0.1555 
 

Table. 7. Comparative test for brownian noise addition 

No. 
Brownian 

Noise Level 

(amplitude) 

Bit Error Rates 
Proposed 

Method 

PRH 

Method 

1. 0.01 0.1037 0.0956 

2. 0.02 0.1254 0.1132 
3. 0.03 0.1487 0.1338 
4. 0.04 0.1557 0.1513 
5. 0.05 0.1767 0.1578 

Average 0.1420 0.1303 

 

Fig. 10. Comparative test for MP3 compression 

Table. 8. Comparative test for MP3 compression 

No. Compressed Bit Rate 

(kbps) 

Bit Error Rates 

Proposed Method PRH Method 

1. 128 0.0598 0.0529 

2. 64 0.0532 0.0461 

3. 32 0.0666 0.0567 

4. 16 0.4186 0.4244 

5. 8 0.4060 0.4196 

Average 0.2008 0.1999 
 

The robustness of the proposed method is also tested for different kinds of distortion types such as „Hard 

Clip‟, „Soft Clip‟, „Heavy Overdrive‟, „Valve Overdrive‟, and „Blues Drive Sustain‟. These distortion types 

are selected from factory presets 

In summary, according to the experimental results discussed above, the reliability and robustness of the 

proposed method to common signal distortions is satisfactory in general, mostly keeping the BER levels 

under threshold. The proposed method especially performs better than the PRH for „linear speed changes‟ 

which is the major challenge in broadcast monitoring systems and „pitch shifting‟ distortion types. For „noise 
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addition‟ and „distortion types like hard clip‟, the PRH outperforms the proposed method. The proposed 

method also well preserves its robustness against „compression‟. Thus, it can be concluded that the proposed 

method can perfectly align the tradeoffs between space-saving and robustness of the audio fingerprints.  

5. Conclusion 
Audio fingerprinting can be used to quickly retrieve perceptual similar songs from a song database. For 

million-song libraries, not only the correct music identification but also the speedy retrieval rate is also very 

important. With the aim of achieving speedy music retrieval, the proposed method modifies the Philips 

Robust Hashing method to reduce its storage requirement for fingerprint database. The experimental results 

clearly showed that the proposed method can reduce the fingerprint size to one-third of the fingerprint 

yielded by the PRH. Additional to reducing the fingerprint size, the proposed method is also comparably 

robust against common signal distortions as the PRH. Thus, the proposed method can be utilized in broadcast 

monitoring systems and noisy environment. In addition, it can balance the trade-off between robustness and 

memory requirements of the fingerprints for large-scale music libraries. 
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