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Abstract. Big cit ies are facing heavy road traffic congestion. The main reason is the increasing number of 

vehicles beyond the road network capacity, which forces traffic po lice at t imes to be incapable of controlling 

the inevitable traffic jams. To resolve those traffic jams, traffic police need the near real-time informat ion of 

the road network e.g. from traffic cameras. In this paper, a  prototype framework of low-latency collection of 

multi-point video streams over a multi-hop multi-channel wireless network is proposed. Video frames are 

captured by Raspberry Pi cameras and sent by the wireless link to the herein -called IoT Concentrators. IoT-

Cloud Hub then pulls and stores those video frames from the IoT Concentrators. Users (traffic police) can 

watch traffic videos from the d isplay screen of the IoT-Cloud Hub. As a proof-of-concept implementation, 

two Pi Cameras have been set up with Apache Kafka Producers and two additional Raspberry Pi’s have been 

set up as the IoT Concentrators, which run the leader and follower Apache Kafka Brokers. To complete our 

system, an Intel
®

 NUC as IoT-Cloud Hub and another Intel
®

 NUC as Orchestration-Hub have been also set 

up. We assume the available wired communicat ion linkage between the Orchestration -Hub and the other 

devices. However, the links between the Pi Cameras, IoT Concentrators and IoT-Cloud Hub are wireless with 

Wi-Fi. To achieve a high performance, mult iple W i-Fi channels can be dynamically configured by the 

Orchestration-Hub to steer the VDO t raffic (based on TCP) away from the congested channels. Based on the 

implementation prototype, the average TCP throughputs over all the wireless links have been improved by 

56.046% on average, compared with the case without the dynamic Wi-Fi channel selection. 
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1. Introduction 
Big cities face inevitable congested road traffic conditions. The main reason for this problem is that the 

roads are built with the limited space and capacity [1]. However, this problem can be solved when the traffic 

police can control the traffic flow smoothly. To control, a real-time information of the road traffic network 

condition is required for the traffic police [2]. Big cities are facing heavy road traffic congestion. The main 

reason is the increasing number of vehicles beyond the road network capacity [1], which forces traffic police 

at times to be incapable of controlling the inevitable traffic jams. To resolve those traffic jams, traffic police 

need the near real-time information of the road network [2].  

Conventionally, the road network condition relies on the inductive loop coil detectors, which count the 

passing vehicles per lane. However, from the viewpoint of traffic police, such information shown in numbers 

or graphs is not insightful enough. Preferably, to enhance their ability to manage the vehicle flows, the traffic 

police want to watch traffic videos from e.g. Closed-Circuit Television (CCTV) system. However, the 

conventional traffic CCTV system is highly costly to deploy at a large scale. For instance, the system needs 

to use wired links for the communication from the camera location to the nearest control points. Due to such 
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costs, this traffic CCTV system, despite of its potential benefits, would be adoptable for only the developed 

or well-economic cities. 

In this paper, a prototype framework of low-latency collection of multi-point video streams over a multi-

hop wireless network is proposed. Enabling the system with wireless linkages is expectedly reducing the 

overall operational and building costs. Further, we design each camera with a cheap electronic board, e.g. 

Raspberry Pi with solid-state cameras. The video frames are sent from the Raspberry Pi’s to IoT 

Concentrators in every 0.2 sec to mimic the near-real-time video playback while not overloading the wireless 

link capacity. Video Frames are played back at the IoT-Cloud Hub for the users. Since the system has been 

designed with the scalability target, for multi-point video streaming, the accumulated video data can be large. 

To deal with that scalability concern, in this paper, a big data framework, namely Apache Kafka [3] is used 

for all the message (or video frames) streaming.  

Streaming is the sending and receiving process of data in a continuous flow [4]. Apache Kafka 

(hereinafter called Kafka) [3] is one of the big data streaming platforms. Kafka is a publish-subscribe 

messaging system where data is sent as Kafka messages to a Kafka topic at a Kafka broker. Any kind of data 

can be sent with Kafka with the data formatted to the allowable data sizes. Too large data must be divided 

into serval small Kafka messages. Apache Zookeeper [5] (hereinafter called Zookeeper) is a centralized 

service for providing distributed synchronization and grouping service. In this work, Zookeeper is used for 

managing the Kafka Brokers in the IoT Concentrators and Zookeeper can detect the addition and removal of 

Kafka Brokers. It also manages the Kafka topics in the Kafka Brokers. Although Kafka has been built 

originally intentionally for the ordered-logged messaging system, often in texts. Recently, researchers have 

tried also to apply Kafka for the video streaming system [6, 7] with the video data that must be modified 

efficiently. 

In this paper, each Raspberry Pi’s with a camera serves as a Kafka producer, which publishes video 

frames as Kafka messages to the available two IoT Concentrators, which run the leader and follower Apache 

Kafka Brokers, respectively. Video playback application as Kafka consumer residing at the IoT-Cloud Hub 

can read the video frames by consuming Kafka messages from the IoT Concentrators. To achieve a high 

performance, multiple Wi-Fi channels per each wireless link have been here proposed to be adjustable 

dynamically by the Orchestration-Hub. The purpose is to steer the VDO traffics (based on TCP) away from 

the congested channels. This design framework has been proved by a small in-laboratory scaled 

implementation prototype and the testbed measurement results are herein reported. 

2. Proposed Framework of Low-Latency Collection of Multi-Point Video 
Stream over Multi-Hop Multi-Channel Wireless Network 

Unlink the earlier work [6], which uses the Industrial, Scientific and Medical (ISM) 5-GHz band, in this 

work, the ISM 2.4-GHz band has been selected to reflect the main capability of switching dynamically those 

channels upon their emerging congestion conditions. Video frames are captured at the Pi Camera and stored 

temporarily at the local storage of Pi Camera before sending to the IoT Concentrator 1 and 2 when the links 

between the Pi Camera and IoT Concentrators become full or subject to too much signal interferences with 

the other Wi-Fi connections. As a result, the channel can be blocking potentially to Kafka messages. To 

avoid the much-interfered channels, the Orchestration-Hub can reassign the Wi-Fi channels between the Pi 

Camera and IoT Concentrators. For simplicity, the Orchestration-Hub is assumed to have the available wired 

communication linkage between the Orchestration-Hub and the other devices. 

In this work, Raspberry Pi Camera serves as the Kafka Producer. This is a cost-effective hardware 

because it has enough computing power to run all the necessary software modules for capturing, storing 

temporarily and sending to the IoT Concentrators. Kafka broker is installed at the IoT Concentrator and 

Raspberry Pi is used as an IoT Concentrator. An Intel® NUC is used at the IoT-Cloud Hub which is serving 

as the central traffic video repository as well as running the video playback applications as Kafka consumers. 

Another Intel® NUC is used as the Orchestration-Hub. The Kafka Zookeeper is installed at the Orchestration-

Hub for controlling topics inside the Kafka brokers and also Kafka brokers inside the IoT Concentrators.  
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Our prototype is designed with four Raspberry Pi’s and two Intel® NUCs with the detailed specification 

summarised in Table I. The proposed prototype framework is shown in Figs. 1 and 2. In streaming data from 

Pi Cameras to IoT Concentrators 1 and 2, Wi-Fi Channel a and Channel b are used. From IoT Concentrators 

to the IoT-Cloud Hub, Channel x and Channel y are used. These channels a, b, x and y are selected from the 

2.4-GHz Wi-Fi channels 1 to 11. To enable multiple channels between a node pair, two Wi-Fi interfaces are 

installed here at each Pi Camera and each IoT Concentrator as well as at the IoT-Cloud Hub. 

Table I: Prototype Device Specification. 
Device Quantity Aim 

Intel
®

 NUC5i5MYHE 2 1 for IoT-Cloud Hub and 1 for 

Orchestration-Hub 

Raspberry Pi 3 model B 4 2 for Pi Cameras and 2 for IoT 

Concentrators 

Wi-Fi USB dongle with omnidirectional 

antenna 

10 External dongles for Intel
®

 

NUC5i5MYHEs and Raspberry Pi’s 

 

Fig. 1: Proposed prototype framework for video streaming. 

 

Fig. 2: Proposed prototype framework for video streaming on the road traffic network.  

3. Preliminary Proof-of-Concept Evaluation 
In the preliminary evaluation, a small testbed is established by using one Pi Camera, two IoT 

Concentrators, one IoT-Cloud Hub and one Orchestration-Hub as shown in Figs. 3 and 4.  

In the test, Pi Camera captures 1080 × 720 resolution video frames and stores the images or video frames 

at the local storage. One video frame is averaged of 40 Kbytes in size. As the local storage of the Raspberry 

Pi, has the limited storage space, 16-GByte Secure Digital (SD) card is used as the local storage device of the 

Raspberry Pi. Video frames are removed 5 sec after their creation. The video frames are converted to Kafka 

messages and sent to the IoT Concentrator 1 and 2 with ISM 2.4 GHz Wi-Fi channels a and b, respectively. 

At the beginning of the test, channels a and b are assigned to Wi-Fi channels 3 and 8, respectively. Two 
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leaders (and follower) Kafka brokers are run at the IoT Concentrators 1 and 2, respectively. IoT-Cloud Hub 

pulls Kafka messages from IoT Concentrators 1 and 2 with Wi-Fi channels x and y, assigned to Wi-Fi 

channels 11 and 12 at the beginning of the test. Kafka messages are converted to video frames and show on 

the screen for the users as shown in Fig. 5. Video frames are stored at the local storage of the IoT-Cloud Hub.  

While streaming the video, Wi-Fi Channels are configured to be highly subject to additionally inserted 

other Wi-Fi interfering sources. As a result, from Pi Camera to the IoT Concentrators 1 and 2, the originally 

assigned Wi-Fi channels have been subsequently changed dynamically by our system to less interfering Wi-

Fi channels 11 and 2, respectively. Likewise, the Wi-Fi channels from IoT Concentrator 1 and 2 to IoT-

Cloud Hub are also changed to Wi-Fi channels 6 and 5, respectively. Before and after such Wi-Fi changing 

instance, Iperf [8] is run to test the average TCP throughput of the link between the Pi Camera, IoT 

Concentrators and IoT-Cloud Hub. Comparison of average TCP throughput between before channel 

changing and after channel changing is shown in Table II. 

 

Fig. 3: Preliminary proof-of-concept evaluation testbed for video streaming. 

 

Fig. 4: Preliminary proof-of-concept evaluation tested at the laboratory. 

 

Fig. 5: Snapshot example during testing for preliminary proof-of-concept evaluation. 
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Table II: Average TCP throughput before channel changing and after channel changing 

From To 

Average TCP 

Throughput 

(Before channel 

changing) 

Average TCP 

Throughput 

(After 

channel 

changing) 

Pi Camera 
IoT 

Concentrator 1 

Channel 3 Channel 1 

8.70Mbit/s 12.65Mbit/s 

Pi Camera 
IoT 

Concentrator 2 

Channel 8 Channel 10 

7.25 Mbit/s 16.88 Mbit/s 

IoT 

Concentrator 1 

IoT-Cloud 

Hub 

Channel 11 Channel 6 

9.54 Mbit/s 15.30 Mbit/s 

IoT 

Concentrator 2 

IoT-Cloud 

Hub 

Channel 2 Channel 5 

18.86 Mbit/s 16.14 Mbit/s 

 

From these results, the throughput of the links is improved after Wi-Fi channel changing expectedly 

Average video streaming latency depends on the average TCP throughput as Kafka uses TCP for streaming. 

After channel changing, the throughput is significantly increased and, therefore, the average latency is also 

decreased. This should help improve the overall quality of video streaming service for our intended 

application. 

4. Conclusion and Future Work 
In this paper, a prototype framework of low-latency collection of multi-point video stream over multi-

hop multi-channel wireless network is designed for road traffic monitoring system with the enabler 

technology of Apache Kafka. To have a high performance for wireless linkage, an Orchestration-Hub is 

introduced to control the Wi-Fi channel selection between Pi Camera, IoT Concentrators and IoT-Cloud Hub. 

A preliminary evaluation is tested and reported here on the proof-of-concept evidence of this design 

framework. It is confirmed that, with the proposed scheme, the obtainable average TCP throughput and 

consequently latency can be greatly improved. This is our ongoing research work. Currently, built on our 

early test successes, a larger scale of system prototype will be implemented with more Pi Cameras and also 

IoT Concentrators and future results will be further reported. 
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