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Abstract. The resistance distance between any two vertices of a connected graph G is defined as the
effective resistance between them in the electrical network constructed from G by replacing each edge of G
with unit resistor. The Kirchhoff index of a graph is a structure-descriptor based on resistance distance. The
investigation on the Kirchhoff index of graph is an important topic in the theory of graph. It is difficult to
implement some algorithms to compute resistance distance and Kirchhoff index in a graph from their
computational complexity. Hence, it makes sense to find closed-form formulae or solve extreme problems for
the Kirchhoff index. For the connected graphs whose cyclomatic number less than two, their resistance
distances and the Kirchhoff indices have been described well. In this paper, we discuss the graphs with
cyclomatic number two, by graph transformations the maximal Kirchhoff index and the corresponding graph
in the theta shape graphs (a specified class of bicycle graphs) are obtained.
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1. Introduction
The graph G considered here is simple undirected, with the vertex set V(G) and edge set E(G). We

denote the number of the vertices of G by |V(G)|, and the number of the edges of G by |E(G)|. The distance
between vertices u and v of graph G, denoted by d(u,v), is the length of the shortest path between them. If e
is an edge of a connected graph G, we denoted by G-e the graph obtained from G by deleting the edge e, and
G\e the graph obtained by removing the edge e and identifying its two end-vertices.

On the basis of electrical network theory, Klein and Randic introduced the novel concept of resistance
distance[1]. Let G be a connected graph with vertices set 1 2, , , nv v vL , they viewed a graph G as an electrical
network N such that each edge of G is assumed to be a unit resistor, the resistance distance between vertices
iv and jv , denoted by ( , )i jr v v or i jr , is defined to be the effective resistance between nodes iv and jv as
computed with Ohm's law in N. The Kirchhoff index of G, defined as [1], ( ) iji j

Kf G r


 , is the sum of
resistance distances between all pairs of vertices in G. The famous Wiener index was denoted as W(G)[2],

( ) iji j
W G d


 , which counts the sum of distances between pairs of vertices of G. Klein and Randic proved that

ij ijr d and ( ) ( )Kf G W G with equality if and only if G is a tree[1]. Kirchhoff index is a structure-descriptor
based on resistance distance. The investigation on the Kirchhoff index of graph is an important topic in the
theory of graph. It is difficult to implement some algorithms to compute resistance distance and Kirchhoff
index in a graph from their computational complexity. Hence, it makes sense to find closed-form formulae
for the Kirchhoff index [1,3]. In present, to compute resistance distance, various methods have been
developed, and relevant for resistance distance have been given for some classes of graphs, and some
relevant indices to Kirchhoff index are discussed[3-16]. For the connected graphs whose cyclomatic number
less than two, their resistance distances and the Kirchhoff indices have been described well. In this paper, we
discuss the bicycle graphs, whose cyclomatic number is two.
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The bicycle graphs are connected graphs whose number of vertices is one more than the number of edges.
The first and second classes of these graphs have been discussed, and their ordering relations and extreme
graphs are obtained [11]. In this paper, we will pay attention to the third class of graphs, i.e. the theta shape
graphs (as shown in Fig.1 (1)). We denote the theta shape graph with n vertices by n . t

n denotes the theta
shape graph with n vertices, and the number of the vertices on the essential circles is t. In [16], We have
investigated the ordering relations of the Kirchhoff index of the theta shape graphs and the minimal
Kirchhoff index and the corresponding graph in this class of graphs are also discussed. In this paper, by the
graph transformation, we find some ordering relations of Kirchhoff indices and discuss the maximal
Kirchhoff index for this class of graphs.

Fig. 1: n , t
n and their extreme graphs

The sum of the resistance distance from iv to other vertices of G is denoted by Kf ( )
iv
G . The following

lemmas will be used in sequel:
Lemma 1.1([8]) For a general graph G, ( ) 1Kf G n  , the equality holds if and only if G is a complete

graph.
Lemma 1.2([9]) For a graph G, 3( ) ( ) / 6Kf G n n  with equality if and only if G is a path.
Lemma 1.3([10]) For a circulate graph G, 31 ( ) ( ) /12n Kf G n n    , the first equality holds if and only if

G is nK and the second does if and only if G is nC .
Lemma 1.4([11]) Let nC be the cycle on 3n  vertices, for any two vertices , ( )i j nv v V C with i j , by

ohm's law, we have ( , ) ( )( ) /
nC i jr v v j i n i j n    .

Lemma 1.5([12]) Let x be a cut vertex of a connected graph G such that G-x has exactly two branches
G1 and G2. Let iG  be the subgraph induced by { }( 1, 2)iG x i  . Then

1 2 1 2 2 1( ) ( ) ( ) (| ( ) | 1) ( ) (| ( ) | 1) ( ),x xKf G Kf G Kf G V G Kf G V G Kf G          

Where ( )
( ) ( , ), 1, 2.

i
x i v V G

Kf G r x v i
  

Lemma 1.6([13]) Let G be a connected graph with e ij being an edge, G G e  , then for any
, ( )( ( ))p q V G V G  

2[ ( , ) ( , ) ( , ) ( , )]( , ) ( , )
4[1 ( , )]

r p i r q j r p j r q ir p q r p q
r i j

    


Lemma 1.7([13]) Let G be a connected graph with e ij being an edge, G G e  , then
2 2

1 1 1
[ ( , ) ( , )] [ ( , ) ( , )]

( ) ( ) .
4[1 ( , )]

n n n

k k k
n r i k r j k r i k r j k

Kf G Kf G
r i j

  
  

  


  

Lemma 1.8([13]) Let G be a connected graph with e ij being an edge. Let G G e   and \G G e  .
Then for any , ( )p q V G , ( , ) [1 ( , )] ( , ) ( , ) ( , )r p q r i j r p q r i j r p q   .

741



2. Main Results

2.1. Two graph transformations and some ordering relations
Transformation 1: The graph G is a connected graph with vertex set 1 2{ , , , }pv v vL , and each vertex

(1 )iv i p  with hanging tree iT , without loss of generality, we suppose the tree iT with the maximal diameter
q. We choose one path of length equal to the diameter of iT , with the corresponding vertices 1 2, , , , , ,i i i ij iqv v v v vL L .
If each vertex ijv with hanging tree iT , we denote such graph as 1G . If the tree ijT is adhered to iqv , we have
the graph 2G (see Fig. 2(1)). We denote the set of vertices of \ij ijT v as 1V , the set  , 1, ,i j iqv v L as 2V .

Fig. 2: Two graph transformations

Theorem 2.1 The graph 1G and 2G are such graphs given in Fig.2 (1), then 2 1( ) ( )Kf G Kf G .
Proof. By Lemma 1.5, we have 1 11 12 11 12 12 11( ) ( ) ( ) (| ( ) | 1) ( ) (| ( ) | 1) ( )

ij ijv vKf G Kf G Kf G V G Kf G V G Kf G      and

2 21 22 21 22 22 21( ) ( ) ( ) (| ( ) | 1) ( ) (| ( ) | 1) ( )
ij ijv vKf G Kf G Kf G V G Kf G V G Kf G      .

As 11 21G G , 12 22G G , 11 21( ) ( )Kf G Kf G , 12 22( ) ( )Kf G Kf G . And 11 21( ) ( )
ij ijv vKf G Kf G , 11 21| ( ) | | ( ) |V G V G ,

12 22| ( ) | | ( ) |V G V G . So we are sufficient to compare 12( )
ijv

Kf G with 22( )
ijv

Kf G ,

12 12 121 2
( ) ( , ) ( , )

ijv G G ij G ijv V v V
Kf r v v r v v

 
   ,

22 22 12 221 2 1 2
22( ) ( , ) ( , ) [ ( , ) ( , )] ( , )

ijv G ij G ij ij iq G ij G ijv V v V v V v V
Kf G r v v r v v d v v r v v r v v

   
       

As ( , ) 0ij iqd v v  , then 12 22( ) ( )
ij ijv vKf G Kf G . The result is obtained.

Transformation 2: The graph G with | ( ) | 3V G  and we choose two vertices of G , for example 0v and
0w with 0 0( , ) 2d v w  , there is an automorphism  of G such that 0 0( ) ( )w v   , then for

any ( )u V G , 0 0( , ) ( , )r v u r w u . kP and lP are two paths with length k and l respectively, and k l . The graph
1G is obtained from G if 0v and 0w with hanging path kP and lP respectively, and 2G is obtained from G

if 0v and 0w with hanging path 1kP  and 1lP  respectively.(see Fig.2(2))
Theorem 2.2 The graph 1G and 2G are such graphs given in Fig.2 (2), then 1 2( ) ( )Kf G Kf G .
Proof. By Lemma 1.5,

0

1 0 0 0( ) ( ) 1

0 0

( 1)( ) ( , ) ( , ) ( , ) [ ( , )] [ ( , ) ]
2

( 1) ( 1)( ) ( ) + ( , )
2 2

kk P Pl

l
v k k ku V u V G u V u V G i

v

k kKf G r v u r v u r v u k r v u k r v w i

k k l lk V G Kf G kl lr v w

    


        

 
    

    

0

1 0 0 0( ) ( ) 1

0 0

( 1)( ) ( , ) ( , ) ( , ) [ ( , )] [ ( , ) ]
2

( 1) ( 1)( ) ( ) ( , )
2 2

l P Plk

k
w ku V u V G u V u G il l V

w

l lKf G r w u r v u r w u l r w u l r v w i

l l k kl V G Kf G kl kr w v

    


        

 
     

    

So           1 1 0 0, 1
l kw vKf G Kf G l k V G r v w     . Since 0 0 0 0| ( ) | 1 ( , ) ( , ),V G d v w r v w   and 0.l k 

Then 1 1( ) ( )
k lv wKf G Kf G . Thus          

12 1 1, 1
k l lv w G l k wKf G Kf G r w v V G Kf G     . Therefore 2 1( ) ( )

k kv vKf G Kf G .
Since        2 1 2 1 ,

k kv vKf G Kf G Kf G Kf G   then we get    2 1Kf G Kf G .
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Theorem 2.3 0 nG  is the graph with the maximal Kirchhoff index, then there must be a vertex of
0G with only one vertex hanging path.
Proof. The result can be obtained by Theorem 2.1 and Theorem 2.2 easily.
Theorem 2.4

The graph G is a graph depicted in Fig.1(2), ti j  , 1 , 1l lG G e   , 2 , 1\ (1 1)l lG G e l i    , then
1
2

(G)
iv

Kf


is

the maximal amongst all vertices of G when i is odd,
1

2 2

(G) (G)
i iv vKf Kf



 are the maximal when i is even.

Proof. ( )q V G  , by Lemma 1.8 1 2
( , ) [1 ( , 1)] ( , ) ( , 1) ( , )G G G G Gr l q r l l r l q r l l r l q     ,

1 2
( 1, ) [1 ( , 1)] ( 1, ) ( , 1) ( 1, )G G G G Gr l q r l l r l q r l l r l q       

If we want to compare ( )
lv

Kf G with 1
( )

lv
Kf G


, we are sufficient to compare 1( )

lv
Kf G with 1 1( )

lv
Kf G


. And

11
1 ,

( ) ( , )
lv G

q t q l
Kf G r l q

  

  , 1 11
1 , 1

( ) ( 1, )
lv G

q t q l
Kf G r l q


   

  , so if 1 [ ]
2
il  , 11 1( ) ( )

l lv vKf G Kf G


 , 1
( ) ( )

l lv vKf G Kf G


 ; if

[ ]
2
i l i  , 11 1( ) ( )

l lv vKf G Kf G


 , 1
( ) ( )

l lv vKf G Kf G


 . Thus we complete the proof.

Theorem 2.5 If 0
t
nG  is the graph with the maximal Kirchhoff index, then 0 1G G when i is odd, and

0 2 3,G G G when i is even.(see Fig.1(3)).
Proof. The result is obtained from Theorem 2.4.

2.2. The maximal Kirchhoff index and the corresponding graph
In this section we consider t

nG such that 1t j  , i and j are both odd,
Theorem 2.6
The graph 1

1
j
nG  and 1

2
iv  with hanging path 1n jP   , the graph 2

2
j
nG  and 1

2
iv  with hanging path

2n jP   , then    1 2Kf G Kf G . (see Fig.1(4))
Proof. Suppose 1 1 1 iG G e   and 2 2 1 iG G e   , by Lemma 1.7,

1 1 1 1

1

2 2
1 1 1

1 1

[ (1, ) ( , )] [ (1, ) ( , )]
( ) ( ) .

4[1 (1,i)]

n n n

k k kG G G G

G

n r k r i k r k r i k
Kf G Kf G

r
     



  
 



  

2 2 2 2

2

2 2
1 1 1

2 2

[ (1, ) ( , )] [ (1, ) ( , )]
( ) ( ) .

4[1 (1,i)]

n n n

k k kG G G G

G

n r k r i k r k r i k
Kf G Kf G

r
     



  
 



  

As
1 1 1 1 1 1

1 1

1 1 1
(1, ) (1, ) (1, ) (1, ) (d ( , ) ( ,1))n j n j n

k k k j k k jG G G G G G
r k r k r k r k l k r l 

         
         ,

1 1 1 1

1

1 1
(i, ) (i, ) (d ( , ) ( ,i))n j n

k k k jG G G G
r k r k l k r l

     
     , and

1 1
( ,1) ( , )

G G
r l r l i  ,

1 1

1 1

1 1
(1, ) ( , )

G

j j

G
k k
r k r i k









 

  ,

so
1 11 1
(1, ) ( , )

n n

G G
k k
r k r i k






  . Similarly,
2 21 1
(1, ) ( , )

n n

G
k k

G
r k r i k






  . As 1G  and 2G  are both bicycle graphs, by the result of

[11], we have 1 2( ) ( )Kf G Kf G  . Thus,

1 1 2 2

1 2

2 2 2 2 2 2 2
1 1

2 2

2[ (1, ) ( , )] [ (1, ) ( , )] ( 1) ( 1)( 2 3) ( 1) (2 2) ( 1)
1 (1,i) 1 (1,i) 3(1 )(1 )

n n

k kG G G G

G G

r k r i k r k r i k i i i i i i i i
r r i i

j i j
j i i ij

    

 

          
 

      
 

As 3i  , 5j  , 2j i  , 21 1 2 0i ij i     , 21 1 3 0i i ij i      , then 2 23(1 )(1 ) 0i ij i i ij      .
And suppose that the function 2 2 2 2 2 2( ) ( 1) ( 1)( 2 3) ( 1) (2 2) ( 1)f j i i i i i i i j i i j           , 2( 1) 0i i   ,
2 2( 1) ( 1)( 2 3) 0i i i i     , 2 2( 1) (2 2) 0i i i     , so if 5j  , ( ) 0f j  . Thus 1 2( ) ( )Kf G Kf G .

3. Conclusion
We have studied the case that i and j are both odd and 1t j  and the corresponding theta shape graph

with the maximal Kirchhoff index is also obtained. Now we haven’t good method to solve other cases, they
are also open.
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